Patents by Inventor Wei-Cheng Wang

Wei-Cheng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230244436
    Abstract: A method and a system for switching multi-function modes applied in an electronic device having a plurality of hardware module functions, and includes receiving input information from a user of the electronic device; obtaining status information of the electronic device; and switching the electronic device to one of the multi-function modes according to the input information and the status information, each of the multi-function modes corresponds to at least one of the plurality of hardware module functions.
    Type: Application
    Filed: August 19, 2022
    Publication date: August 3, 2023
    Inventors: WEN-YI KUO, CHUNG-TSUNG WANG, JU-CHI HSUEH, CHENG-FENG YEH, WEI-CHENG WANG
  • Publication number: 20230215929
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. The semiconductor device includes a first channel members being vertically stacked, a second channel members being vertically stacked, an n-type work function layer wrapping around each of the first channel members, a first p-type work function layer over the n-type work function layer and wrapping around each of the first channel members, a second p-type work function layer wrapping around each of the second channel members, a third p-type work function layer over the second p-type work function layer and wrapping around each of the second channel members, and a gate cap layer over a top surface of the first p-type work function layer and a top surface of the third p-type work function layer such that the gate cap layer electrically couples the first p-type work function layer and the third p-type work function layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen
  • Publication number: 20230155002
    Abstract: Embodiments provide a replacement metal gate in a FinFET or nanoFET which utilizes a conductive metal fill. The conductive metal fill has an upper surface which has a fin shape which may be used for a self-aligned contact.
    Type: Application
    Filed: March 22, 2022
    Publication date: May 18, 2023
    Inventors: Shih-Hang Chiu, Wei-Cheng Wang, Chung-Chiang Wu, Chi On Chui
  • Publication number: 20230140968
    Abstract: Semiconductor devices having improved gate electrode structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; an n-type work function layer over the high-k dielectric layer; an anti-reaction layer over the n-type work function layer, the anti-reaction layer including a dielectric material; a p-type work function layer over the anti-reaction layer, the p-type work function layer covering top surfaces of the anti-reaction layer; and a conductive cap layer over the p-type work function layer.
    Type: Application
    Filed: January 13, 2023
    Publication date: May 11, 2023
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Jo-Chun Hung, Wei-Cheng Wang, Kuan-Ting Liu, Chi On Chui
  • Patent number: 11605720
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. The semiconductor device includes a first channel members being vertically stacked, a second channel members being vertically stacked, an n-type work function layer wrapping around each of the first channel members, a first p-type work function layer over the n-type work function layer and wrapping around each of the first channel members, a second p-type work function layer wrapping around each of the second channel members, a third p-type work function layer over the second p-type work function layer and wrapping around each of the second channel members, and a gate cap layer over a top surface of the first p-type work function layer and a top surface of the third p-type work function layer such that the gate cap layer electrically couples the first p-type work function layer and the third p-type work function layer.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen
  • Patent number: 11594610
    Abstract: Semiconductor devices having improved gate electrode structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; an n-type work function layer over the high-k dielectric layer; an anti-reaction layer over the n-type work function layer, the anti-reaction layer including a dielectric material; a p-type work function layer over the anti-reaction layer, the p-type work function layer covering top surfaces of the anti-reaction layer; and a conductive cap layer over the p-type work function layer.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Jo-Chun Hung, Wei-Cheng Wang, Kuan-Ting Liu, Chi On Chui
  • Publication number: 20230028460
    Abstract: A semiconductor device includes an active region. A metal gate electrode is disposed over the active region. A conductive layer is disposed over the metal gate electrode. A silicon-containing layer is disposed over a first portion of the conductive layer. A dielectric layer is disposed over a second portion of the conductive layer. A gate via vertically extends through the silicon-containing layer. The gate via is disposed over, and electrically coupled to, the metal gate electrode.
    Type: Application
    Filed: April 21, 2022
    Publication date: January 26, 2023
    Inventors: Wei-Cheng Wang, Shih-Hang Chiu, Kuan-Ting Liu, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20230016381
    Abstract: A semiconductor structure includes a semiconductor fin protruding from a substrate; a gate structure engaging with the semiconductor fin. The semiconductor structure also includes an interlayer dielectric (ILD) layer disposed over the substrate and adjacent to the gate structure, where a top surface of the gate structure is below a top surface of the ILD layer; a first metal layer in direct contact with a top surface of the gate structure; a second metal layer disposed over the first metal layer, where the first metal layer is disposed on bottom and sidewall surfaces of the second metal layer, where the bottom surface of the second metal layer has a concave profile, and where the second metal layer differs from the first metal layer in composition; and a gate contact disposed over the second metal layer.
    Type: Application
    Filed: May 6, 2022
    Publication date: January 19, 2023
    Inventors: Wei-Cheng Wang, Shih-Hang Chiu, Kuan-Ting Liu, Chi On Chui, Chia-Wei Chen, Jian-Hao Chen
  • Publication number: 20230010065
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure. The gate structure includes a gate dielectric layer, an n-type work function layer embedded in the gate dielectric layer, a dielectric capping layer embedded in the n-type work function layer, and a p-type work function layer embedded in the dielectric capping layer. A top surface of the gate structure exposes the n-type work function layer, the dielectric capping layer, and the p-type work function layer. The semiconductor structure also includes a first metal cap on the n-type work function layer and a second metal cap on the p-type work function layer. The first metal cap is spaced apart from the second metal cap. without formed on the dielectric capping layer.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 12, 2023
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Wei-Cheng Wang, Chia-Wei Chen, Jian-Hao Chen, Kuan-Ting Liu, Chi On Chui
  • Publication number: 20230010952
    Abstract: A semiconductor device includes stacks of nano-structures that each extend in a first horizontal direction. The stacks each extend in a vertical direction and are separated from one another in a second horizontal direction. A first gate is disposed over a first subset of the stacks. A second gate is disposed over a second subset of the stacks. A first conductive capping layer is disposed over a substantial entirety of an upper surface of the first gate. A second conductive capping layer is disposed over a substantial entirety of an upper surface of the second gate. A dielectric structure is disposed between the first gate and the second gate in the second horizontal direction. The dielectric structure physically and electrically separates the first gate and the second gate. An upper surface of the dielectric structure is substantially free of having the first or second conductive capping layers disposed thereon.
    Type: Application
    Filed: May 5, 2022
    Publication date: January 12, 2023
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen, Chun-Chih Cheng
  • Patent number: 11474368
    Abstract: A driving system for moving several optical elements is provided, including a first module, a second module and a third module. The first, second and third modules respectively have a first, second and third terminal electrically connected an external circuit. The first terminal is on a first side of the first module, the second terminal is on a second side of the second module, and the third terminal is on a third side of the third module. Specifically, the first, second, and third terminals are located on the same side of the driving system.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 18, 2022
    Assignee: TDK TAIWAN CORP.
    Inventors: Chien-Lun Huang, Shao-Chung Chang, Wei-Cheng Wang, Fu-Yuan Wu, Shou-Jen Liu
  • Patent number: 11474416
    Abstract: An optical member driving mechanism for driving an optical member having an optical axis is provided, including a fixed portion, a movable portion, a driving assembly, and a circuit board. The fixed portion includes a case and a frame, and a gap is formed therebetween. The movable portion is movably connected to the fixed portion, and configured to hold the optical member. The driving assembly can drive the movable portion to move relative to the fixed portion. The circuit board is disposed in the gap, and has a plate portion and a protruding portion. The protruding portion is disposed between the plate portion and the fixed portion, so as to tightly dispose the circuit board in the gap.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 18, 2022
    Assignee: TDK TAIWAN CORP.
    Inventors: Chien-Lun Huang, Shao-Chung Chang, Wei-Cheng Wang, Sin-Jhong Song, Che-Hsiang Chiu, Fu-Yuan Wu, Shou-Jen Liu
  • Publication number: 20220285514
    Abstract: A semiconductor device includes a plurality of active region structures that each protrude upwards in a vertical direction. The active region structures each extend in a first horizontal direction. The active region structures are separated from one another in a second horizontal direction different from the first horizontal direction. A gate structure is disposed over the active region structures. The gate structure extends in the second horizontal direction. The gate structure partially wraps around each of the active region structures. A conductive capping layer is disposed over the gate structure. A gate via is disposed over the conductive capping layer. A dimension of the conductive capping layer measured in the second horizontal direction is substantially greater than a maximum dimension of the gate via measured in the second horizontal direction.
    Type: Application
    Filed: September 3, 2021
    Publication date: September 8, 2022
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Kuan-Ting Liu, Yen-Ju Chen, Chun-Chih Cheng, Wei-Chen Hsiao
  • Publication number: 20220278218
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. The semiconductor device includes a first channel members being vertically stacked, a second channel members being vertically stacked, an n-type work function layer wrapping around each of the first channel members, a first p-type work function layer over the n-type work function layer and wrapping around each of the first channel members, a second p-type work function layer wrapping around each of the second channel members, a third p-type work function layer over the second p-type work function layer and wrapping around each of the second channel members, and a gate cap layer over a top surface of the first p-type work function layer and a top surface of the third p-type work function layer such that the gate cap layer electrically couples the first p-type work function layer and the third p-type work function layer.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Chia-Wei Chen, Wei Cheng Hsu, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Shih-Hang Chiu, Wei-Cheng Wang, Yen-Ju Chen
  • Patent number: D963434
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: September 13, 2022
    Inventor: Wei-Cheng Wang
  • Patent number: D969911
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 15, 2022
    Inventor: Wei-Cheng Wang
  • Patent number: D972333
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: December 13, 2022
    Inventor: Wei-Cheng Wang
  • Patent number: D984222
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: April 25, 2023
    Inventor: Wei-Cheng Wang
  • Patent number: D989482
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: June 20, 2023
    Inventor: Wei-Cheng Wang
  • Patent number: D995315
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: August 15, 2023
    Inventor: Wei-Cheng Wang