Patents by Inventor Wei-Ming Wang

Wei-Ming Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11776796
    Abstract: A system and method for reducing particle contamination on substrates during a deposition process using a particle control system is disclosed here. In one embodiment, a film deposition system includes: a processing chamber sealable to create a pressurized environment and configured to contain a plasma, a target and a substrate in the pressurized environment; and a particle control unit, wherein the particle control unit is configured to provide an external force to each of at least one charged atom and at least one contamination particle in the plasma, wherein the at least one charged atom and the at last one contamination particle are generated by the target when it is in direct contact with the plasma, wherein the external force is configured to direct the at least one charged atom to a top surface of the substrate and to direct the at least one contamination particle away from the top surface of the substrate.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Kuo, Po-Shu Wang, Wei-Ming Wang
  • Publication number: 20230287952
    Abstract: A method that includes measuring vibration levels in a semiconductor manufacturing apparatus, determining one or more sections of the semiconductor manufacturing apparatus that vibrate at levels greater than a predetermined vibration level, and reducing the vibration levels in the one or more sections to be at or within the predetermined vibration level by coupling one or more weights to an external surface of the semiconductor manufacturing apparatus in the one or more sections.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 14, 2023
    Inventors: Yi Chen HO, Chih Ping LIAO, Chien Ting LIN, Jie-Ying YANG, Wei-Ming WANG, Ker-Hsun LIAO, Chi-Hsun LIN
  • Patent number: 11754293
    Abstract: There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: September 12, 2023
    Assignee: PIXART IMAGING INC.
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Chiung-Wen Lin, Po-Wei Yu, Wei-Ming Wang, Sen-Huang Huang
  • Publication number: 20230207409
    Abstract: A semiconductor memory device and method of making the same are disclosed. The semiconductor memory device includes a substrate that includes a memory region and a peripheral region, a transistor including a metal gate located in the peripheral region, a composite dielectric film structure located over the metal gate of the transistor, the composite dielectric film structure including a first dielectric layer and a second dielectric layer over the first dielectric layer, where the second dielectric layer has a greater density than a density of the first dielectric layer, and at least one memory cell located in the memory region. The composite dielectric film structure provides enhanced protection of the metal gate against etching damage and thereby improves device performance.
    Type: Application
    Filed: March 1, 2023
    Publication date: June 29, 2023
    Inventors: Sheng-Chieh CHEN, Wei-Ming Wang, Ming-Lun Lee, Chih-Ren Hsieh, Ming Chyi Liu
  • Patent number: 11678592
    Abstract: The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ming Wang, Chia-Wei Liu, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao, Huei-Tzu Wang
  • Patent number: 11637046
    Abstract: A semiconductor memory device and method of making the same are disclosed. The semiconductor memory device includes a substrate that includes a memory region and a peripheral region, a transistor including a metal gate located in the peripheral region, a composite dielectric film structure located over the metal gate of the transistor, the composite dielectric film structure including a first dielectric layer and a second dielectric layer over the first dielectric layer, where the second dielectric layer has a greater density than a density of the first dielectric layer, and at least one memory cell located in the memory region. The composite dielectric film structure provides enhanced protection of the metal gate against etching damage and thereby improves device performance.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Sheng-Chieh Chen, Chih-Ren Hsieh, Ming-Lun Lee, Wei-Ming Wang, Ming Chyi Liu
  • Patent number: 11600543
    Abstract: A semiconductor memory device and method of making the same are disclosed. The semiconductor memory device includes a substrate that includes a memory region and a peripheral region, a transistor including a metal gate located in the peripheral region, a composite dielectric film structure located over the metal gate of the transistor, the composite dielectric film structure including a first dielectric layer and a second dielectric layer over the first dielectric layer, where the second dielectric layer has a greater density than a density of the first dielectric layer, and at least one memory cell located in the memory region. The composite dielectric film structure provides enhanced protection of the metal gate against etching damage and thereby improves device performance.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: March 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Sheng-Chieh Chen, Chih-Ren Hsieh, Ming-Lun Lee, Wei-Ming Wang, Ming Chyi Liu
  • Publication number: 20220376175
    Abstract: A memory cell includes: a first contact feature partially embedded in a first dielectric layer; a barrier layer, lining the first contact feature, that comprises a first portion disposed between the first contact feature and first dielectric layer, and a second portion disposed above the first dielectric layer; a resistive material layer disposed above the first contact feature, the resistive material layer coupled to the first contact feature through the second portion of the barrier layer; and a second contact feature embedded in a second dielectric layer above the first dielectric layer.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventors: Huei-Tsz WANG, Po-Shu Wang, Wei-Ming Wang
  • Patent number: 11430953
    Abstract: A memory cell includes: a first contact feature partially embedded in a first dielectric layer; a barrier layer, lining the first contact feature, that comprises a first portion disposed between the first contact feature and first dielectric layer, and a second portion disposed above the first dielectric layer; a resistive material layer disposed above the first contact feature, the resistive material layer coupled to the first contact feature through the second portion of the barrier layer; and a second contact feature embedded in a second dielectric layer above the first dielectric layer.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huei-Tsz Wang, Po-Shu Wang, Wei-Ming Wang
  • Publication number: 20220270943
    Abstract: A semiconductor memory device and method of making the same are disclosed. The semiconductor memory device includes a substrate that includes a memory region and a peripheral region, a transistor including a metal gate located in the peripheral region, a composite dielectric film structure located over the metal gate of the transistor, the composite dielectric film structure including a first dielectric layer and a second dielectric layer over the first dielectric layer, where the second dielectric layer has a greater density than a density of the first dielectric layer, and at least one memory cell located in the memory region. The composite dielectric film structure provides enhanced protection of the metal gate against etching damage and thereby improves device performance.
    Type: Application
    Filed: September 14, 2021
    Publication date: August 25, 2022
    Inventors: Sheng-Chieh CHEN, Chih-Ren HSIEH, Ming-Lun LEE, Wei-Ming WANG, Ming Chyi LIU
  • Publication number: 20220146115
    Abstract: There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: CHIH-MING SUN, MING-HAN TSAI, CHIUNG-WEN LIN, PO-WEI YU, WEI-MING WANG, SEN-HUANG HUANG
  • Patent number: 11280500
    Abstract: There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 22, 2022
    Assignee: PIXART IMAGING INC.
    Inventors: Chih-Ming Sun, Ming-Han Tsai, Chiung-Wen Lin, Po-Wei Yu, Wei-Ming Wang, Sen-Huang Huang
  • Publication number: 20210327693
    Abstract: A system and method for reducing particle contamination on substrates during a deposition process using a particle control system is disclosed here. In one embodiment, a film deposition system includes: a processing chamber sealable to create a pressurized environment and configured to contain a plasma, a target and a substrate in the pressurized environment; and a particle control unit, wherein the particle control unit is configured to provide an external force to each of at least one charged atom and at least one contamination particle in the plasma, wherein the at least one charged atom and the at last one contamination particle are generated by the target when it is in direct contact with the plasma, wherein the external force is configured to direct the at least one charged atom to a top surface of the substrate and to direct the at least one contamination particle away from the top surface of the substrate.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Tsung-Han KUO, Po-Shu WANG, Wei-Ming WANG
  • Publication number: 20210280783
    Abstract: The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ming Wang, Chia-Wei Liu, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao, Huei-Tzu Wang
  • Patent number: 11056324
    Abstract: A system and method for reducing particle contamination on substrates during a deposition process using a particle control system is disclosed here. In one embodiment, a film deposition system includes: a processing chamber sealable to create a pressurized environment and configured to contain a plasma, a target and a substrate in the pressurized environment; and a particle control unit, wherein the particle control unit is configured to provide an external force to each of at least one charged atom and at least one contamination particle in the plasma, wherein the at least one charged atom and the at last one contamination particle are generated by the target when it is in direct contact with the plasma, wherein the external force is configured to direct the at least one charged atom to a top surface of the substrate and to direct the at least one contamination particle away from the top surface of the substrate.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: July 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Kuo, Po-Shu Wang, Wei-Ming Wang
  • Patent number: 11038108
    Abstract: The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ming Wang, Chia-Wei Liu, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao, Huei-Tzu Wang
  • Publication number: 20210135103
    Abstract: A memory cell includes: a first contact feature partially embedded in a first dielectric layer; a barrier layer, lining the first contact feature, that comprises a first portion disposed between the first contact feature and first dielectric layer, and a second portion disposed above the first dielectric layer; a resistive material layer disposed above the first contact feature, the resistive material layer coupled to the first contact feature through the second portion of the barrier layer; and a second contact feature embedded in a second dielectric layer above the first dielectric layer.
    Type: Application
    Filed: January 4, 2021
    Publication date: May 6, 2021
    Inventors: Huei-Tsz WANG, Po-Shu Wang, Wei-Ming Wang
  • Patent number: 10886465
    Abstract: A memory cell includes: a first contact feature partially embedded in a first dielectric layer; a barrier layer, lining the first contact feature, that comprises a first portion disposed between the first contact feature and first dielectric layer, and a second portion disposed above the first dielectric layer; a resistive material layer disposed above the first contact feature, the resistive material layer coupled to the first contact feature through the second portion of the barrier layer; and a second contact feature embedded in a second dielectric layer above the first dielectric layer.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: January 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huei-Tsz Wang, Po-Shu Wang, Wei-Ming Wang
  • Publication number: 20200373487
    Abstract: The present disclosure is directed to a method for the formation of resistive random-access memory (RRAM) structures with a low profile between or within metallization layers. For example, the method includes forming, on a substrate, a first metallization layer with conductive structures and a first dielectric layer abutting sidewall surfaces of the conductive structures; etching a portion of the first dielectric layer to expose a portion of the sidewall surfaces of the conductive structures; depositing a memory stack on the first metallization layer, the exposed portion of the sidewall surfaces, and a top surface of the conductive structures; patterning the memory stack to form a memory structure that covers the exposed portion of the sidewall surfaces and the top surface of the conductive structures; depositing a second dielectric layer to encapsulate the memory stack; and forming a second metallization layer on the second dielectric layer.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ming Wang, Chia-Wei Liu, Jen-Sheng Yang, Wen-Ting Chu, Yu-Wen Liao, Huei-Tzu Wang
  • Publication number: 20200224886
    Abstract: There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 16, 2020
    Inventors: Chih-Ming SUN, Ming-Han TSAI, Chiung-Wen LIN, Po-Wei YU, Wei-Ming WANG, Sen-Huang HUANG