Patents by Inventor Wen-Cheng Chen

Wen-Cheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11409062
    Abstract: Provided is an optical transceiver module, comprising a housing, a substrate, an optical receiving device and a plurality of optical transmitting devices. The substrate is disposed in the housing. The optical receiving device is disposed on the substrate. The plurality of optical transmitting devices are connected to the substrate, and the optical transmitting devices are arranged in an alternating manner. The optical transceiver module effectively utilizes the internal space thereof for a compact design and can have a simple structure for manufacturing.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 9, 2022
    Assignee: USENLIGHT CORPORATION
    Inventors: Chun-Yang Chang, Yun-Cheng Huang, Wen-Hsien Li, Cheng-Hung Lu, Ming-Ju Chen, Chang-Cherng Wu
  • Patent number: 11409162
    Abstract: An electronic device is provided, including a frame, a backlight module, a working panel, and a tape. The frame includes a side wall and a back plate. The side wall includes an outer surface. The extension direction of the back plate is different from the extension direction of the side wall. The backlight module is disposed on the back plate. The working panel and the back plate are disposed on the opposite sides of the backlight module. The tape is in contact with at least a portion of the outer surface and the working panel.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: August 9, 2022
    Assignee: INNOLUX CORPORATION
    Inventors: Wen-Cheng Huang, Ting-Sheng Chen, Chia-Chun Yang, Chin-Cheng Kuo
  • Publication number: 20220243031
    Abstract: A matte polyester film and a method for manufacturing the same are provided, The method for manufacturing the matte polyester film includes: providing a recycled polyester material; physically regenerating a part of the recycled polyester material to form physically regenerated polyester chips having a first intrinsic viscosity; chemically regenerating another part of the recycled polyester material to form chemically regenerated polyester chips having a second intrinsic viscosity less than the first intrinsic viscosity; mixing matte regenerated polyester chips, the physically regenerated polyester chips, and the chemically regenerated polyester chips according to a predetermined intrinsic viscosity so as to form a polyester masterbatch material; melting and then extruding the polyester masterbatch material to obtain the matte polyester film having the predetermined intrinsic viscosity.
    Type: Application
    Filed: August 23, 2021
    Publication date: August 4, 2022
    Applicant: NAN YA PLASTICS CORPORATION
    Inventors: Wen-Cheng Yang, Te-Chao Liao, Chun-Cheng Yang, Chia-Yen Hsiao, Hao-Sheng Chen
  • Publication number: 20220238568
    Abstract: Some embodiments relate to an image sensor. The image sensor includes a semiconductor substrate including a pixel region and a peripheral region. A backside isolation structure extends into a backside of the semiconductor substrate and laterally surrounds the pixel region. The backside isolation structure includes a metal core, and a dielectric liner separates the metal core from the semiconductor substrate. A conductive feature is disposed over a front side of the semiconductor substrate. A through substrate via extends from the backside of the semiconductor substrate through the peripheral region to contact the conductive feature. The through substrate via is laterally offset from the backside isolation structure. A conductive bridge is disposed beneath the backside of the semiconductor substrate and electrically couples the metal core of the backside isolation structure to the through substrate via.
    Type: Application
    Filed: June 2, 2021
    Publication date: July 28, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220238697
    Abstract: A method includes performing an atomic layer deposition (ALD) process to form a dielectric layer on a wafer. The ALD process comprises an ALD cycle includes pulsing calypso ((SiCl3)2CH2), purging the calypso, pulsing ammonia, and purging the ammonia. The method further includes performing a wet anneal process on the dielectric layer, and performing a dry anneal process on the dielectric layer.
    Type: Application
    Filed: May 28, 2021
    Publication date: July 28, 2022
    Inventors: Wen-Kai Lin, Che-Hao Chang, Chi On Chui, Yung-Cheng Lu, Szu-Ying Chen
  • Publication number: 20220238636
    Abstract: The present disclosure, in some embodiments, relates to a method of forming a capacitor structure. The method includes forming a capacitor dielectric layer over a lower electrode layer, and forming an upper electrode layer over the capacitor dielectric layer. The upper electrode layer is etched to define an upper electrode and to expose a part of the capacitor dielectric layer. A spacer structure is formed over horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and also along sidewalls of the upper electrode. The spacer structure is etched to remove the spacer structure from over the horizontally extending surfaces of the upper electrode layer and the capacitor dielectric layer and to define a spacer. The capacitor dielectric layer and the lower electrode layer are etched according to the spacer to define a capacitor dielectric and a lower electrode.
    Type: Application
    Filed: May 5, 2021
    Publication date: July 28, 2022
    Inventors: Ching-Sheng Chu, Dun-Nian Yaung, Yu-Cheng Tsai, Meng-Hsien Lin, Ching-Chung Su, Jen-Cheng Liu, Wen-De Wang, Guan-Hua Chen
  • Publication number: 20220231058
    Abstract: An image sensor includes a pixel and an isolation structure. The pixel includes a photosensitive region and a circuitry region next to the photosensitive region. The isolation structure is located over the pixel, where the isolation structure includes a conductive grid and a dielectric structure covering a sidewall of the conductive grid, and the isolation structure includes an opening or recess overlapping the photosensitive region. The isolation structure surrounds a peripheral region of the photosensitive region.
    Type: Application
    Filed: May 24, 2021
    Publication date: July 21, 2022
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Wen-Chang Kuo, Sheng-Chau Chen, Feng-Chi Hung, Sheng-Chan Li
  • Publication number: 20220216085
    Abstract: An electrostatic chuck is provided, the electrostatic chuck includes a base; and an insulating layer, an electrode layer, a first dielectric layer, and a second dielectric layer sequentially stacked on the base. The first dielectric layer is aluminum oxide (Al2O3) or aluminum nitride (AlN). A material of the second dielectric layer is different from a material of the first dielectric layer, and the second dielectric layer includes titanium element, IVA group element, and oxygen element.
    Type: Application
    Filed: July 23, 2021
    Publication date: July 7, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yung-Hsiang HUANG, Wei-Cheng TANG, Yi-Che SU, Wen-Pin CHUANG, Su-Mei CHEN WEI, Ya-Tin YU, Yun-Shan HUANG
  • Patent number: 11381899
    Abstract: A headphone control system for use within a headphone includes a temperature sensor for detecting whether the circumference temperature of the headphone is relatively far from the human temperature implying the headphone is no longer worn by the user, and a gravity sensor for detecting whether the headphone is stationary implying that the headphone is not used for enabling a power saving mode, or is moving implying that the headphone is not yet unused for maintaining operation. The detection constantly is applied to the headphone disregarding whether the headphone is in an operation mode or a power saving mode so as to efficiently have the headphone operated in response to currently using or power-saved in response to non-using.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: July 5, 2022
    Assignees: FOXCONN (KUNSHAN) COMPUTER CONNECTOR CO., LTD., FOXCONN INTERCONNECT TECHNOLOGY LIMITED
    Inventors: Wen-Kuei Chou, Hui-Cheng Chen, Hsu-Kuo Liang
  • Publication number: 20220209666
    Abstract: The present invention provides a voltage control method for controlling a power supply. The voltage control method comprises the following steps: obtaining a present output voltage value associated with a present gain value; obtaining a predetermined output voltage value associated with a predetermined duty ratio; calculating a target gain value, corresponding to the predetermined duty ratio, according to a gain value formula; performing a weight calculation on the present gain value and the target gain value for generating a buffer gain value; and setting an output voltage command according to the buffer gain value. Wherein the buffer gain value is between the present gain value and the target gain value.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 30, 2022
    Inventors: Szu-Chieh SU, Wei-Chin TSENG, Chih-Hsien WANG, His-Ping TSAI, Wen-Chih CHEN, Guei-Cheng HU
  • Patent number: 11373957
    Abstract: A semiconductor package includes a first substrate, a first layer structure, a second layer structure, a first antenna layer and an electronic component. The first antenna layer is formed on at least one of the first layer structure and the second layer structure, wherein the first antenna layer has an upper surface flush with a layer upper surface of the first layer structure or the second layer structure. The electronic component is disposed on a substrate lower surface of the first substrate and exposed from the first substrate. The first layer structure is formed between the first substrate and the second layer structure.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: June 28, 2022
    Assignee: MediaTek Inc.
    Inventors: Wen-Sung Hsu, Tao Cheng, Nan-Cheng Chen, Che-Ya Chou, Wen-Chou Wu, Yen-Ju Lu, Chih-Ming Hung, Wei-Hsiu Hsu
  • Patent number: 11150404
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Patent number: 10592426
    Abstract: A method for accessing a physical region page (PRP) list includes obtaining a PRP address of a PRP list, in which the PRP address has M bits; performing operation to the first N bits of the PRP address and the N+1 th to Mth bits of the PRP address respectively to obtain a page base address if the PRP address is within a page boundary; and performing operation to the first N bits of the PRP address and the N+1 th to Mth bits of the PRP address respectively to obtain next PRP address pointer if the PRP address reaches the page boundary. N is an integer, and M is an integer larger than N.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 17, 2020
    Assignee: ASMEDIA TECHNOLOGY INC.
    Inventor: Wen-Cheng Chen
  • Publication number: 20190369329
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Patent number: 10459159
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: October 29, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Publication number: 20190250327
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Publication number: 20190227943
    Abstract: A method for accessing a physical region page (PRP) list includes obtaining a PRP address of a PRP list, in which the PRP address has M bits; performing operation to the first N bits of the PRP address and the N+1 th to Mth bits of the PRP address respectively to obtain a page base address if the PRP address is within a page boundary; and performing operation to the first N bits of the PRP address and the N+1 th to Mth bits of the PRP address respectively to obtain next PRP address pointer if the PRP address reaches the page boundary. N is an integer, and M is an integer larger than N.
    Type: Application
    Filed: July 18, 2018
    Publication date: July 25, 2019
    Inventor: Wen-Cheng CHEN
  • Patent number: 10267988
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Publication number: 20190004247
    Abstract: A method includes bonding an electronic die to a photonic die. The photonic die includes an opening. The method further includes attaching an adapter onto the photonic die, with a portion of the adapter being at a same level as a portion of the electronic die, forming a through-hole penetrating through the adapter, with the through-hole being aligned to the opening, and attaching an optical device to the adapter. The optical device is configured to emit a light into the photonic die or receive a light from the photonic die.
    Type: Application
    Filed: October 5, 2017
    Publication date: January 3, 2019
    Inventors: Sung-Hui Huang, Jui Hsieh Lai, Tien-Yu Huang, Wen-Cheng Chen, Yushun Lin
  • Patent number: 9634682
    Abstract: An analog-to-digital module includes a sampling unit, for generating an output voltage between a positive output end and a negative output end according to a positive input voltage of a positive input end and a negative input voltage of a negative input end; a comparing unit, for generating a digital output signal according to magnitude relationship between the output voltage and a reference voltage; a variable current source, for generating a variable current according to the digital output signal at the negative input end in a first period according to a control signal; a measured current source, for generating a measured current at the negative input end; and an adjusting unit, for adjusting the output voltage according to the digital output signal in a second period according to the control signal; wherein the first period does not overlap the second period.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 25, 2017
    Assignee: SensorTek technology Corp.
    Inventors: Tso-Sheng Tsai, Jer-Hau Hsu, Wen-Cheng Chen, Ming-Huang Liu