Patents by Inventor Wen Chun Huang

Wen Chun Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8631379
    Abstract: Various embodiments of the invention provide techniques to ensure a layout for an integrated circuit is split-able. In a method embodiment, a layout is generated in a customer site having a layout library as inputs wherein the library provides exemplary layouts that have been verified to be spit-able and that can be used and layouts that can cause conflicts to avoid. A real-time odd cycle checker is also provided in which the checker identifies in real time conflict areas and odd cycles as they arise during layout generation. To reduce memory usage layouts of various devices may be separated so that each individual layout or a small number of layouts, rather than a large layout for the whole application circuit, can be checked against conflicts. Once the layout is ready at the customer site, it is sent to the foundry site to be decomposed into two masks and taped-out. Other embodiments are also disclosed.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pi-Tsung Chen, Ming-Hui Chih, Ken-Hsien Hsieh, Wei-Long Wang, Wen-Chun Huang, Ru-Gun Liu, Tsai-Sheng Gau, Wen-Ju Yang, Gwan Sin Chang, Yung-Sung Yen
  • Patent number: 8631360
    Abstract: A method for performing OPC and evaluating OPC solutions is disclosed. An exemplary method includes receiving a design database corresponding to an IC circuit mask. A first lithography simulation and evaluation is performed on the design database utilizing a first set of performance indexes. A modification is made to the design database based on a result of performing the first lithography simulation and evaluation. A second lithography simulation and evaluation is performed on the design database utilizing a second set of performance indexes to verify the modification. If necessary, the design database is modified again based on a result of the second lithography simulation and evaluation. The modified design database is provided to a mask manufacturer for manufacturing the mask corresponding to the modified design database.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Yu-Po Tang, Chia-Ping Chiang, Feng-Ju Chang, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20140013287
    Abstract: The present disclosure describes an OPC method of preparing data for forming a mask. The method includes setting a plurality of dissection points at the main feature and further includes setting a target point at the main feature. The method includes arranging the two dissection points crossing the main feature symmetrically each other. The method includes separating two adjacent dissection points at one side of the main feature by a maximum resolution of the mask writer. The method includes dividing the main feature into a plurality of segments using the dissection points. The method includes performing an OPC convergence simulation to a target point. The method includes correcting the segments belonging to an ambit of the target point and further includes correcting the segment shared by two ambits.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Nian-Fuh Cheng, Yu-Po Tang, Chien-Fu Lee, Sheng-Wen Lin, Yong-Cheng Lin, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 8627241
    Abstract: The present disclosure provides one embodiment of an integrated circuit (IC) method. The method includes receiving an IC design layout having a plurality of IC regions each including an IC pattern; performing a dissection process to the IC design layout; and performing a correction process to the IC design layout using a correction model that includes proximity effect and location effect. The correction process includes performing a first correction step to a first IC region of the IC regions, resulting in a first corrected IC pattern in the first IC region; and performing a second correction step to a second IC region of the IC regions, starting with the first corrected IC pattern, resulting in a second corrected IC pattern.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20140007024
    Abstract: The present disclosure provides one embodiment of an integrated circuit (IC) method. The method includes building a pattern bank including a pattern having an area of interest. The method further includes recognizing that the pattern of the pattern bank corresponds to a pattern of an IC design layout. The method further includes identifying an area of interest of the pattern of the IC design layout that corresponds to the area of interest of the pattern of the pattern bank. The method further includes performing pattern recognition dissection on the area of interest of the pattern of the IC design layout to dissect the area of interest of the pattern of the IC design layout into a plurality of segments. The method further includes after performing pattern recognition dissection, producing a modified IC design layout.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Lung Tsai, Jui-Hsuan Feng, Sheng-Wen Lin, Wen-Li Cheng, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 8601407
    Abstract: Provided is a method of performing a maskless lithography process. The method includes providing a proximity correction pattern. The method includes generating a deformed pattern based on the proximity correction pattern. The method includes performing a first convolution process to the proximity correction pattern to generate a first proximity correction pattern contour. The method includes processing the first proximity correction pattern contour to generate a second proximity correction pattern contour. The method includes performing a second convolution process to the deformed pattern to generate a first deformed pattern contour. The method includes processing the first deformed pattern contour to generate a second deformed pattern contour. The method includes identifying mismatches between the second proximity correction pattern contour and the second deformed pattern contour. The method includes determining whether the deformed pattern is lithography-ready in response to the identifying.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chun Wang, Pei-Shiang Chen, Tzu-Chin Lin, Cheng-Hung Chen, Shih-Chi Wang, Nian-Fuh Cheng, Jeng-Horng Chen, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130316289
    Abstract: The present disclosure provides for many different embodiments of a charged particle beam data storage system and method. In an example, a method includes dividing a design layout into a plurality of units; creating a lookup table that maps each of the plurality of units to its position within the design layout and a data set, wherein the lookup table associates any repeating units in the plurality of units to a same data set; and exposing an energy sensitive layer to a charged particle beam based on the lookup table.
    Type: Application
    Filed: August 12, 2013
    Publication date: November 28, 2013
    Applicant: Taiwan Seminconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chun Wang, Pei-Shiang Chen, Tzu-Chin Lin, Faruk Krecinic, Jeng-Horng Chen, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130292841
    Abstract: The present disclosure provides an interconnect structure for a semiconductor device. The interconnect structure includes a first metal layer that contains a first metal line. The interconnect structure includes a dielectric layer located over the first metal layer. The dielectric layer contains a first sub-via electrically coupled to the first metal line and a second sub-via electrically coupled to the first sub-via. The second sub-via is different from the first sub-via. The interconnect structure includes a second metal layer located over the dielectric layer. The second metal layer contains a second metal line electrically coupled to the second sub-via. No other metal layer is located between the first metal layer and the second metal layer.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Ming Lai, Wen-Chun Huang, Ru-Gun Liu, Pi-Tsung Chen
  • Patent number: 8572519
    Abstract: Embodiments of the present disclosure provide methods and apparatuses for integrated circuits. An exemplary integrated circuit (IC) method includes providing an IC design layout that includes a design feature; determining a dimensional difference between the design feature and a corresponding developed photoresist feature of a photoresist layer; modifying the CD of the design feature to compensate for the difference, thereby generating a modified IC design layout; and making a mask using the modified IC design layout.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: October 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen Hao Liu, Hsien-Huang Liao, Chi-Cheng Hung, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130275926
    Abstract: A method for performing OPC and evaluating OPC solutions is disclosed. An exemplary method includes receiving a design database corresponding to an IC circuit mask. A first lithography simulation and evaluation is performed on the design database utilizing a first set of performance indexes. A modification is made to the design database based on a result of performing the first lithography simulation and evaluation. A second lithography simulation and evaluation is performed on the design database utilizing a second set of performance indexes to verify the modification. If necessary, the design database is modified again based on a result of the second lithography simulation and evaluation. The modified design database is provided to a mask manufacturer for manufacturing the mask corresponding to the modified design database.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Yu-Po Tang, Chia-Ping Chiang, Feng-Ju Chang, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130275925
    Abstract: The present disclosure provides one embodiment of an integrated circuit (IC) method. The method includes receiving an IC design layout having a plurality of IC regions each including an IC pattern; performing a dissection process to the IC design layout; and performing a correction process to the IC design layout using a correction model that includes proximity effect and location effect. The correction process includes performing a first correction step to a first IC region of the IC regions, resulting in a first corrected IC pattern in the first IC region; and performing a second correction step to a second IC region of the IC regions, starting with the first corrected IC pattern, resulting in a second corrected IC pattern.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130258304
    Abstract: The present disclosure provides a semiconductor lithography system. The lithography system includes a projection optics component. The projection optics component includes a curved aperture. The lithography system includes a photo mask positioned over the projection optics component. The photo mask contains a plurality of elongate semiconductor patterns. The semiconductor patterns each point in a direction substantially perpendicular to the curved aperture of the projection optics component. The present disclosure also provides a method. The method includes receiving a design layout for a semiconductor device. The design layout contains a plurality of semiconductor patterns each oriented in a given direction. The method includes transforming the design layout into a mask layout. The semiconductor patterns in the mask layout are oriented in a plurality of different directions as a function of their respective location.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company
    Inventors: Ching-Hsu Chang, Nian-Fuh Cheng, Chih-Shiang Chou, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130246981
    Abstract: The present disclosure provides one embodiment of an integrated circuit (IC) method. The method includes receiving an IC design layout having an main feature, the main feature including two corners and an edge spanning between the two corners; performing a feature adjustment to the edge; performing a dissection to the edge such that the edge is divided to include two corner segments and one center segment between the two corner segments; performing a first optical proximity correction (OPC) to the main feature for a center target associated with the center segment; thereafter, performing a second OPC to the main feature for two corner targets associated with the corner segments; and thereafter, performing a third OPC to main feature for the center target, resulting in a modified design layout.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ping Chiang, Tsong-Hua Ou, Yu-Po Tang, Ming-Hui Chih, Wen-Li Cheng, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 8527916
    Abstract: The present disclosure provides one embodiment of an integrated circuit (IC) method. The method includes receiving an IC design layout having an main feature, the main feature including two corners and an edge spanning between the two corners; performing a feature adjustment to the edge; performing a dissection to the edge such that the edge is divided to include two corner segments and one center segment between the two corner segments; performing a first optical proximity correction (OPC) to the main feature for a center target associated with the center segment; thereafter, performing a second OPC to the main feature for two corner targets associated with the corner segments; and thereafter, performing a third OPC to main feature for the center target, resulting in a modified design layout.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ping Chiang, Tsong-Hua Ou, Yu-Po Tang, Ming-Hui Chih, Wen-Li Cheng, Cheng Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 8527918
    Abstract: The present disclosure provides integrated circuit methods for target-based dummy insertion. A method includes providing an integrated circuit (IC) design layout, and providing a thermal model for simulating thermal effect on the IC design layout, the thermal model including optical simulation and silicon calibration. The method further includes providing a convolution of the thermal model and the IC design layout to generate a thermal image profile of the IC design layout, defining a thermal target for optimizing thermal uniformity across the thermal image profile, comparing the thermal target and the thermal image profile to determine a difference data, and performing thermal dummy insertion to the IC design layout based on the difference data to provide a target-based IC design layout.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Chou Cheng, Boren Luo, Wen-Hao Liu, Tsong-Hua Ou, Chih-Wei Hsu, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 8507159
    Abstract: The present disclosure provides for many different embodiments of a charged particle beam data storage system and method. In an example, a method includes dividing a design layout into a plurality of units; creating a lookup table that maps each of the plurality of units to its position within the design layout and a data set, wherein the lookup table associates any repeating units in the plurality of units to a same data set; and exposing an energy sensitive layer to a charged particle beam based on the lookup table.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 13, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chun Wang, Pei-Shiang Chen, Tzu-Chin Lin, Faruk Krecinic, Jeng-Horng Chen, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20130205265
    Abstract: A method of optical proximity correction (OPC) convergence control that includes providing a lithography system having a photomask and an illuminator. The method further includes performing an exposure by the illuminator on the photomask. Also, the method includes optimizing an optical illuminator setting for the lithography system with a defined gate pitch in a first direction in a first template. Additionally, the method includes determining OPC correctors to converge the OPC results with a target edge placement error (EPE) to produce a first OPC setting for the first template. The first OPC setting targets a relatively small EPE and mask error enhancement factor (MEEF)of the defined gate pitch in the first template. In addition, the method includes checking the first OPC setting for a relatively small EPE, MEEF and DOM consistency with the first template of the defined gate pitch in a second, adjacent template.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Cheng Kuo, Ching-Che Tsai, Tzu-Chun Lo, Chih-Wei Hsu, Hua-Tai Lin, Tsai-Sheng Gau, Wen-Chun Huang, Chih-Shiang Chou, Hsin-Chang Lee, Kuei Shun Chen
  • Patent number: 8499261
    Abstract: Provided is an apparatus for fabricating a semiconductor device. The apparatus includes a first photomask and a second photomask. The first photomask has a plurality of first features thereon, and the first photomask having a first global pattern density. The second photomask has a plurality of second features thereon, and the second photomask has a second global pattern density. The plurality of first and second features collectively define a layout image of a layer of the semiconductor device. The first and second global pattern densities have a predetermined ratio.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: July 30, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hui Chih, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu, Chii-Ping Chen, Jiing-Feng Yang
  • Patent number: 8477299
    Abstract: The present disclosure is directed generally to a method and apparatus for monitoring mask process impact on lithography performance. A method including receiving a physical wafer pattern according to a mask, extracting a mask contour from the mask, and extracting a deconvolution pattern based on the mask contour. A lithography process is simulated to create a virtual wafer pattern based on the deconvolution pattern. The virtual wafer pattern is then compared to the physical wafer pattern.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 2, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping Chieh Wu, Chien-Hsun Chen, Ru-Gun Liu, Wen-Chun Huang, Chih-Ming Lai, Boren Luo
  • Patent number: 8473877
    Abstract: The present disclosure involves a method of performing a maskless lithography process. The method includes receiving a computer layout file for an integrated circuit (IC) device. The layout file contains a plurality of IC sections. The method includes separating the computer layout file into a plurality of sub-files. The method includes striping the plurality of sub-files concurrently using a plurality of computer processors, thereby generating a plurality of striped sub-files. The method includes transferring the plurality of striped sub-files to a maskless lithography system.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: June 25, 2013
    Inventors: Hung-Chun Wang, Tzu-Chin Lin, Nian-Fuh Cheng, Jeng-Horng Chen, Wen-Chun Huang, Ru-Gun Liu