Patents by Inventor Wen Feng

Wen Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120156518
    Abstract: A process for joining a stainless steel part and a zirconia ceramic part comprising: providing a SUS part, a ZrO ceramic part, a Mo foil and a Ni foil; placing the ZrO ceramic part, the Mo foil, the Ni foil, and the SUS part into a mold, the Mo foil and the Ni foil located between the ZrO ceramic part and the SUS part, the Mo foil abutting against the ZrO ceramic part, the Ni foil abutting against the SUS part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the ZrO ceramic part, the Mo foil, and the Ni foil at least until the SUS part, the ZrO ceramic part, the Mo foil and the Ni foil form a integral composite article.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 21, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120148868
    Abstract: A process for joining a bronze part and a silicon carbide ceramic part comprising: providing a bronze part, a SiC ceramic part, a Al foil and a Ni foil; placing the SiC ceramic part, the Al foil, the Ni foil, and the bronze part into a mold, the Al foil and the Ni foil located between the SiC ceramic part and the bronze part, the Al foil abutting against the SiC ceramic part, the Ni foil abutting against the bronze part and the Al foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the bronze part, the SiC ceramic part, the Al foil, and the Ni foil at least until the bronze part, the SiC ceramic part, the Al foil and the Ni foil form a integral composite article.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120148867
    Abstract: A process for joining a brass part and a silicon carbide ceramic part comprising: providing a brass part, a SiC ceramic part, a Ti foil and a Ni foil; placing the SiC ceramic part, the Ti foil, the Ni foil, and the brass part into a mold, the Ti foil and the Ni foil located between the SiC ceramic part and the brass part, the Ti foil abutting against the SiC ceramic part, the Ni foil abutting against the brass part and the Ti foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the brass part, the SiC ceramic part, the Ti foil, and the Ni foil at least until the brass part, the SiC ceramic part, the Ti foil and the Ni foil form a integral composite article.
    Type: Application
    Filed: June 29, 2011
    Publication date: June 14, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY ( ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120140516
    Abstract: The backlight module comprises a light guide device, pluralities of light sources and at least one optical film. The light guide device further contains body, first microstructures, second microstructures, flat portions and diffusive beads. The first microstructures are disposed on reflective surface. A first point and a second point are disposed at two ends of the first microstructure with a first width (P1). Each flat portion has a gap (G) defined between two adjacent first microstructures. The second microstructure connects to the body by means of two edge portions. Two edge portions have a second width (P2) defined on the incident surface; wherein a first depth (H1) is defined to be the distance between the crossing point of two edge portions away from the incident surface. Pluralities of diffusive beads have weight Mb. The body has weight Mt. Then the equations of H 1 P 2 * P 1 G ? 0.288 and H 1 P 2 * P 1 G * M t M b ? 96.0 are satisfied.
    Type: Application
    Filed: May 19, 2011
    Publication date: June 7, 2012
    Applicant: Entire Technology Co., Ltd.
    Inventors: Hao Xiang Lin, Yan Zuo Chen, Wen Feng Cheng, Jui Hsiang Chang
  • Publication number: 20120141824
    Abstract: A process for joining a brass part and a silicone carbide ceramics part, comprising steps of: providing parts comprising a brass part, a silicone carbide ceramics part, an aluminum foil and a nickel foil; bringing surfaces of the silicone carbide ceramics part, the aluminum foil, the nickel foil and the brass part into contact in turn; applying a joining pressure between about 10 MPa and 40 MPa to the parts; heating the parts at a rate below 50° C./min when a temperature of the parts is below about 300° C.; when the temperature of the parts is above about 300° C., heating the parts at a rate of about 80° C./min˜200° C./min until to a joining temperature of about 550° C. to about 650° C.
    Type: Application
    Filed: June 22, 2011
    Publication date: June 7, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120141823
    Abstract: A process for joining a brass part and a silicone carbide ceramics part, comprising steps of: providing a metal part made of brass, a ceramic part made of silicone carbide ceramics, a titanium foil and a nickel foil; bring the metal part, ceramic part, titanium foil and nickel foil into contact, with the titanium and nickel foil inserted between the metal part and ceramic part; applying a pressure of about 20 MPa˜60 MPa to the parts to be joined; and simultaneously applying a pulse electric current to the parts while the pressure is applied for heating up the parts to a temperature of about 950° C. to about 1150° C. at a rate of about 50° C./min˜300° C./min, maintaining the temperature for about 20 minutes˜40 minutes.
    Type: Application
    Filed: June 22, 2011
    Publication date: June 7, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO.LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120135268
    Abstract: A process for joining a stainless steel part and a silicon nitride ceramic part comprising: providing a stainless steel part, a SiN ceramic part, a Mo foil and a Fe foil; placing the SiN ceramic part, the Mo foil, the Fe foil, and the stainless steel part into a mold, the Mo foil and the Fe foil located between the SiN ceramic part and the stainless steel part, the Mo foil abutting the SiN ceramic part, the Fe foil abutting the stainless steel part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the stainless steel part, the SiN ceramic part, the Mo foil, and the Fe foil at least until the stainless steel part, the SiN ceramic part, the Mo foil and the Fe foil form a integral composite article.
    Type: Application
    Filed: July 21, 2011
    Publication date: May 31, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120109346
    Abstract: An audio device includes a processor, a storage unit, an audio processing module, a silence detection circuit, a condition determining circuit, a direct current (DC) level bias circuit and an appending circuit. The audio device generates identification data, control signals, and original audio signals. The silence detection circuit detects silence segments of the original audio signals, and generates driving signals if the silence segments are detected. Then the condition determining circuit determines if the identification data needs to be appended into the silence segments according to the driving signals and the control signals, and outputs the identification data in DC signal form if the identification data needs to be appended into the silence segments. After DC voltage level of the identification data in DC signal form is biased, the appending circuit appends the biased identification data into the silence segments of the original audio signals.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 3, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: XUE-WEN FENG, JIAN-MING QIU, DONG-JIAO GUO
  • Publication number: 20120107641
    Abstract: A process for joining a stainless steel part and a silicon carbide ceramic part comprising: providing a SUS part, a SiC ceramic part, a Mo foil and a Ni foil; depositing a nickel coating on a surface of the SiC ceramic part; placing the SiC ceramic part, the Mo foil, the Ni foil, and the SUS part into a mold, the Mo foil and the Ni foil located between the SiC ceramic part and the SUS part; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part with the nickel coating, the SiC ceramic part, the Mo foil, and the Ni foil at least until the SUS part, the SiC ceramic part, the Mo foil and the Ni foil form a integral composite article.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 3, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD
    Inventors: Hsin-Pei CHANG, Wen-Rong CHEN, Huann-Wu CHIANG, Cheng-Shi CHEN, Wen-Feng HU
  • Publication number: 20120107640
    Abstract: A process for joining a carbon steel part and a silicon carbide ceramic part, comprising steps of: providing a carbon steel part, a SiC ceramic part, and a Ni foil; bringing surfaces of the carbon steel part, SiC ceramic part, and Ni foil into contact, with the Ni foil inserted between the carbon steel part and SiC ceramic part; applying a pulsed electric current to the parts to be joined, heating the parts to a joining temperature of about 800-1100° C., and simultaneously applying a joining pressure of about 20-60 MPa to the parts while the current is applied, and maintaining the joining temperature and the joining pressure for about 10-30 minutes.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 3, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO.,LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120100388
    Abstract: A process for joining a stainless steel part and a titanium carbide ceramic part comprising: providing a SUS part, a TiC ceramic part, a Ti foil and a Fe foil; placing the TiC ceramic part, the Ti foil, the Fe foil, and the SUS part into a mold, the Ti foil and the Fe foil located between the TiC ceramic part and the SUS part, the Ti foil abutting the TiC ceramic part, the Fe foil abutting the SUS part and the Ti foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the TiC ceramic part, the Ti foil, and the Fe foil at least until the SUS part, the TiC ceramic part, the Ti foil and the Fe foil form a integral composite article.
    Type: Application
    Filed: June 13, 2011
    Publication date: April 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Publication number: 20120100381
    Abstract: A process for joining a stainless steel part and a silicon carbide ceramic part comprising: providing a SUS part, a SiC ceramic part, a Mo foil and a Ti foil; placing the SiC ceramic part, the Mo foil, the Ti foil, and the SUS part into a mold, the Mo foil and the Ti foil located between the SiC ceramic part and the SUS part, the Mo foil abutting the SiC ceramic part, the Ti foil abutting the SUS part and the Mo foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the SUS part, the SiC ceramic part, the Mo foil, and the Ti foil at least until the SUS part, the SiC ceramic part, the Mo foil and the Ti foil form a integral composite article.
    Type: Application
    Filed: June 20, 2011
    Publication date: April 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Patent number: 8164141
    Abstract: An opening structure includes a semiconductor substrate, at least one dielectric layer disposed on the semiconductor substrate, wherein the dielectric layer has a plurality of openings exposing the semiconductor substrate, and each of the openings has a sidewall, a dielectric thin film covering at least a portion of the sidewall of each of the openings, and a metal layer filled in the openings.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: April 24, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Po-Chao Tsao, Chang-Chi Huang, Ming-Tsung Chen, Feng-Yi Chang, Pei-Yu Chou, Jiunn-Hsiung Liao, Chih-Wen Feng, Ying-Chih Lin
  • Patent number: 8162512
    Abstract: An optical sheet receiving an incident light from a light source is provided. The optical sheet includes a body, a plurality of reflective structures, and a plurality of Fresnel lens units. The body includes an incident surface and an emergent surface. The incident surface receives the incident light with an incident angle. The refractive index of the body is ni and i is a positive integer. The reflective structures are placed on the body. There is a spacing W between two neighboring reflective structures. In the direction of the incident light, the thickness of the reflective structure is t. The Fresnel lens units, having a width P, are disposed on the emergent surface. Each Fresnel lens is corresponded to the spacing. When the equation, tan - 1 ? [ P 2 6 ? t ] > sin - 1 ? ? i = 1 j ? 1 n i , j ? 1 , is satisfied, the incident light passes through the spacing, the incident angle is adjusted by the thickness t and converged by the Fresnel lens units.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 24, 2012
    Assignee: Entire Technology Co., Ltd.
    Inventors: Yan-Zuo Chen, Wen-Feng Cheng, Li-Ping Cho
  • Publication number: 20120094145
    Abstract: A process for joining a stainless steel part and a zirconia ceramic part comprising: providing a SUS part, a ZrO2 ceramic part, a Mo foil and a Cu foil; depositing a nickel coating on a surface of the ZrO2 ceramic part; placing the ZrO2 ceramic part, the Mo foil, the Cu foil, and the SUS part into a mold, the Mo foil and the Cu foil located between the ZrO2 ceramic part and the SUS part; placing the mold into a chamber of a hot press sintering device, heating the chamber and pressing the SUS part with the nickel coating, the ZrO2 ceramic part, the Mo foil, and the Cu foil at least until the SUS part, the ZrO2 ceramic part, the Mo foil and the Cu foil form a integral composite article.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 19, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (SHENZHEN) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Patent number: 8153272
    Abstract: A process for joining a brass part and a silicon carbide ceramic part comprising: providing a brass part, a SiC ceramic part, a Al foil and a Ni foil; placing the SiC ceramic part, the Al foil, the Ni foil, and the brass part into a mold, the Al foil and the Ni foil located between the SiC ceramic part and the brass part, the Al foil abutting against the SiC ceramic part, the Ni foil abutting against the brass part and the Al foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the brass part, the SiC ceramic part, the Al foil, and the Ni foil at least until the brass part, the SiC ceramic part, the Al foil and the Ni foil form a integral composite article.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 10, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Patent number: 8152253
    Abstract: An anti-falling apparatus for a cabinet includes a receiving member capable of being mounted to the cabinet. An extending arm is slidably received in the receiving member. The extending arm includes a first end a second end, and is capable of moving from a first position to a second position. A supporting sub-assembly is attached to the first end of the extending arm. A first distance from the first end to a top of the receiving member is greater than that a second distance from the second end to the top of the receiving member.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: April 10, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Mo-Ming Yu, Wen-Feng Hu
  • Publication number: 20120063165
    Abstract: A light guide device and a backlight module containing the light guide device thereon are provided. The light guide device comprises a main body and pluralities of microstructures. The main body has refractive index n. A thickness T is defined between the base face and the emitting face of light guide device. Each microstructure comprises a first foundation, a second foundation, an apex, a first reflective face, a second reflective face and a plane face. The microstructure has width P. The first reflective face connects the first foundation and the apex, wherein a first distance L1 is defined between the first foundation and the apex. The second reflective face connects the second foundation and the apex, wherein a second distance L2 is defined between the second foundation and the apex. The plane face defines an interval S between the two adjacent microstructures, wherein the equation is satisfied: 0.
    Type: Application
    Filed: December 16, 2010
    Publication date: March 15, 2012
    Applicant: ENTIRE TECHNOLOGY CO., LTD.
    Inventors: CHUNG HUNG CHIEN, WEN FENG CHENG
  • Publication number: 20120057950
    Abstract: A coated fastener has a tip and a coating on the fastener, at least at the tip. The coating is formulated from a solvent-borne resin. The fastener includes one or both of a solids based additive in the solvent-borne acrylic resin and an overcoat on the solvent-borne acrylic resin. A strip of collated fasteners with the coating is also disclosed.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 8, 2012
    Applicant: ILLINOIS TOOL WORKS INC.
    Inventors: Christopher A. Horst, Jyi-Jiin Luo, Wen-Feng Liu, Daniel V. Chin, Daniel P. Birr
  • Patent number: 8109479
    Abstract: A multi-vacuum mount type support device includes a multi-end connection bar, multiple supporting arms each having one end thereof horizontally pivotally connected to a respective end of the multi-end connection bar by a respective pivot lock, multiple vacuum mount assemblies vertically pivotally connected to the other ends of the supporting arms by respective pivot lock for securing to a flat surface by a vacuum suction force, and a mount connected to one front end of the multi-end connection to hold a holder member for holding an electronic apparatus.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: February 7, 2012
    Inventor: Wen-Feng Tsai