Patents by Inventor Wen-Hsing Hsieh
Wen-Hsing Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250259292Abstract: The present disclosure provides a method for topography simulation of a physical structure under a topography-changing process. The method includes initializing a voxel mesh as a three-dimensional (3D) representation of a physical structure by a general-purpose processor, generating a plurality of particles, simulating a flight path of at least one of the particles by a hardware-accelerated processor different from the general-purpose processor, identifying a voxel unit in the voxel mesh that intersects the flight path by the hardware-accelerated processor, passing information describing a collision between the one of the particles and the voxel unit from the hardware-accelerated processor to the general-purpose processor, determining a reaction between the one of the particles and the voxel unit by the general-purpose processor, and adding an extra voxel unit adjacent to the voxel unit based on the determining of the reaction.Type: ApplicationFiled: April 3, 2025Publication date: August 14, 2025Inventors: Zhengping Jiang, Nuo Xu, Ji-Ting Li, Yuan Hao Chang, Zhiqiang Wu, Wen-Hsing Hsieh
-
Patent number: 12361199Abstract: A method of generating an IC layout diagram includes receiving an IC layout diagram including a gate region and a gate via, the gate via being positioned at a location within an active region and along a width of the gate region extending across the active region, receiving a first gate resistance value of the gate region, retrieving a second gate resistance value from a resistance value reference based on the location and the width, using the first and second resistance values to determine that the IC layout diagram does not comply with a design specification, and based on the non-compliance with the design specification, modifying the IC layout diagram.Type: GrantFiled: January 24, 2024Date of Patent: July 15, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ke-Ying Su, Jon-Hsu Ho, Ke-Wei Su, Liang-Yi Chen, Wen-Hsing Hsieh, Wen-Koi Lai, Keng-Hua Kuo, KuoPei Lu, Lester Chang, Ze-Ming Wu
-
Patent number: 12349393Abstract: Embodiments of the present disclosure provide a semiconductor device structure including a first channel layer formed of a first material, wherein the first channel layer has a first width, a second channel layer formed of a second material different from the first material, wherein the second channel layer has a second width less than the first width, and the second channel layer is in contact with a first surface of the first channel layer. The structure also includes a third channel layer formed of the second material, wherein the third channel layer has a third width less than the second width, and the third channel layer is in contact with a second surface of the first channel layer. The structure also includes a gate dielectric layer conformally disposed on the first channel layer, the second channel layer, and the third channel layer, and a gate electrode layer disposed on the gate dielectric layer.Type: GrantFiled: February 8, 2024Date of Patent: July 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Ching Wang, Wei-Yang Lee, Ming-Chang Wen, Jo-Tzu Hung, Wen-Hsing Hsieh, Kuan-Lun Cheng
-
Patent number: 12349380Abstract: Embodiments of the present disclosure includes a semiconductor device. The semiconductor device includes first suspended nanostructures vertically stacked over one another and disposed on a substrate, a first gate stack engaging the first suspended nanostructures, a first gate spacer disposed on sidewalls of the first gate stack, second suspended nanostructures vertically stacked over one another and disposed on the substrate, a second gate stack engaging the second suspended nanostructures, and a second gate spacer disposed on sidewalls of the second gate stack. A middle portion of the first suspended nanostructures has a first thickness measured in a direction perpendicular to a top surface of the substrate. A middle portion of the second suspended nanostructures has a second thickness measured in the direction. The second thickness is smaller than the first thickness.Type: GrantFiled: January 17, 2023Date of Patent: July 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Ching Wang, Chia-Ying Su, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
-
Patent number: 12317526Abstract: The present disclosure provides a semiconductor device and a method of manufacturing the semiconductor device. The semiconductor device includes channel members vertically stacked above a substrate, a gate structure engaging the channel members, a gate sidewall spacer disposed on a sidewall of the gate structure, an epitaxial feature abutting end portions of the channel members, and inner spacers interposing the gate structure and the epitaxial feature. The end portion of at least one of the channel members includes a first dopant. A concentration of the first dopant in the end portion of the at least one of the channel members is higher than in a center portion of the at least one of the channel members. The concentration of the first dopant in the end portion of the at least one of the channel members is higher than in an outer portion of the epitaxial feature.Type: GrantFiled: April 1, 2024Date of Patent: May 27, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chih-Ching Wang, Chung-I Yang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
-
Publication number: 20250169142Abstract: A semiconductor device includes first nanostructures vertically separated from one another, a first gate structure wrapping around each of the first nanostructures, and second nanostructures vertically separated from one another. The semiconductor device also includes a second gate structure wrapping around the second nanostructures, a first drain/source structure coupled to a first end of the first nanostructures, a second drain/source structure coupled to both of a second end of the first nanostructures and a first end of the second nanostructures, and a third drain/source structure coupled to a second end of the second nanostructures. The first drain/source structure has a first doping type, the second and third drain/source structures have a second doping type, and the first doping type is opposite to the second doping type.Type: ApplicationFiled: January 22, 2025Publication date: May 22, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Meng-Sheng Chang, Chia-En Huang, Chun Chung Su, Wen-Hsing Hsieh
-
Patent number: 12300754Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary device includes a channel layer, a first source/drain feature, a second source/drain feature, and a metal gate. The channel layer has a first horizontal segment, a second horizontal segment, and a vertical segment connects the first horizontal segment and the second horizontal segment. The first horizontal segment and the second horizontal segment extend along a first direction, and the vertical segment extends along a second direction. The vertical segment has a width along the first direction and a thickness along the second direction, and the thickness is greater than the width. The channel layer extends between the first source/drain feature and the second source/drain feature along a third direction. The metal gate wraps channel layer. In some embodiments, the first horizontal segment and the second horizontal segment are nanosheets.Type: GrantFiled: March 27, 2023Date of Patent: May 13, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Chih-Ching Wang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Zhiqiang Wu
-
Patent number: 12300749Abstract: A method includes receiving a semiconductor substrate. The semiconductor substrate has a top surface and includes a semiconductor element. Moreover, the semiconductor substrate has a fin structure formed thereon. The method also includes recessing the fin structure to form source/drain trenches, forming a first dielectric layer over the recessed fin structure in the source/drain trenches, implanting a dopant element into a portion of the fin structure beneath a bottom surface of the source/drain trenches to form an amorphous semiconductor layer, forming a second dielectric layer over the recessed fin structure in the source/drain trenches, annealing the semiconductor substrate, and removing the first and second dielectric layers. After the annealing and the removing steps, the method further includes further recessing the recessed fin structure to provide a top surface. Additionally, the method includes forming an epitaxial layer from and on the top surface.Type: GrantFiled: August 10, 2023Date of Patent: May 13, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Chih-Ching Wang, Wen-Yuan Chen, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
-
Patent number: 12272043Abstract: The present disclosure provides a method for topography simulation of a physical structure under a topography-changing process. The method includes initializing a voxel mesh as a three-dimensional (3D) representation of the physical structure, generating a batch of particles, simulating a flight path of at least one of the particles with a ray-tracing method, identifying a voxel unit in the voxel mesh that intersects the flight path, determining a surface reaction between the one of the particles and the voxel unit, and adding an extra voxel unit adjacent to the voxel unit based on the determining of the surface reaction.Type: GrantFiled: June 4, 2022Date of Patent: April 8, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Zhengping Jiang, Nuo Xu, Ji-Ting Li, Yuan Hao Chang, Zhiqiang Wu, Wen-Hsing Hsieh
-
Patent number: 12237414Abstract: A method includes receiving a semiconductor substrate. The semiconductor substrate has a top surface and includes a semiconductor element. Moreover, the semiconductor substrate has a fin structure formed thereon. The method also includes recessing the fin structure to form source/drain trenches, forming a first dielectric layer over the recessed fin structure in the source/drain trenches, implanting a dopant element into a portion of the fin structure beneath a bottom surface of the source/drain trenches to form an amorphous semiconductor layer, forming a second dielectric layer over the recessed fin structure in the source/drain trenches, annealing the semiconductor substrate, and removing the first and second dielectric layers. After the annealing and the removing steps, the method further includes further recessing the recessed fin structure to provide a top surface. Additionally, the method includes forming an epitaxial layer from and on the top surface.Type: GrantFiled: May 7, 2021Date of Patent: February 25, 2025Assignee: TAIWAN SEMICONDCUTOR MANUFACTURING CO., LTD.Inventors: Chih-Ching Wang, Wen-Yuan Chen, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
-
Patent number: 12230712Abstract: A semiconductor device according to the present disclosure includes a dielectric fin having a helmet layer, a gate structure disposed over a first portion of the helmet layer and extending along a direction, and a dielectric layer adjacent the gate structure and disposed over a second portion of the helmet layer. A width of the first portion along the direction is greater than a width of the second portion along the direction.Type: GrantFiled: July 24, 2023Date of Patent: February 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Yu-Shan Lu, Chung-I Yang, Kuo-Yi Chao, Wen-Hsing Hsieh, Jiun-Ming Kuo, Chih-Ching Wang, Yuan-Ching Peng
-
Patent number: 12230681Abstract: A semiconductor device includes first nanostructures vertically separated from one another, a first gate structure wrapping around each of the first nanostructures, and second nanostructures vertically separated from one another. The semiconductor device also includes a second gate structure wrapping around the second nanostructures, a first drain/source structure coupled to a first end of the first nanostructures, a second drain/source structure coupled to both of a second end of the first nanostructures and a first end of the second nanostructures, and a third drain/source structure coupled to a second end of the second nanostructures. The first drain/source structure has a first doping type, the second and third drain/source structures have a second doping type, and the first doping type is opposite to the second doping type.Type: GrantFiled: November 22, 2023Date of Patent: February 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Meng-Sheng Chang, Chia-En Huang, Chun Chung Su, Wen-Hsing Hsieh
-
Publication number: 20250048611Abstract: A method of forming a semiconductor structure includes forming a fin over a semiconductor substrate, forming an isolation region on sidewalls of the fin, forming a metal gate over the fin and the isolation region, etching the metal gate to form a trench through the isolation region, passivating the top portion of the semiconductor substrate exposed in the trench to form a dielectric layer at a bottom of the trench, and depositing a dielectric material in the trench to form a dielectric structure. The dielectric structure divides the metal gate into two sections.Type: ApplicationFiled: August 4, 2023Publication date: February 6, 2025Inventors: Yen Yu Chen, Ming-Yen Tsai, Wen-Hsing Hsieh, Ying-Han Chiou
-
Patent number: 12218214Abstract: Source/drain silicide that improves performance and methods for fabricating such are disclosed herein. An exemplary device includes a first channel layer disposed over a substrate, a second channel layer disposed over the first channel layer, and a gate stack that surrounds the first channel layer and the second channel layer. A source/drain feature disposed adjacent the first channel layer, second channel layer, and gate stack. The source/drain feature is disposed over first facets of the first channel layer and second facets of the second channel layer. The first facets and the second facets have a (111) crystallographic orientation. An inner spacer disposed between the gate stack and the source/drain feature and between the first channel layer and the second channel layer. A silicide feature is disposed over the source/drain feature where the silicide feature extends into the source/drain feature towards the substrate to a depth of the first channel layer.Type: GrantFiled: April 15, 2021Date of Patent: February 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Ching Wang, Chung-I Yang, Jon-Hsu Ho, Wen-Hsing Hsieh, Chung-Wei Wu, Zhiqiang Wu
-
Publication number: 20240405123Abstract: A high-voltage device structure and methods of forming the same are described. In some embodiments, the structure includes a deep well region of a first conductivity type disposed in a substrate, a doped region disposed on the deep well region; a well region of the first conductivity type surrounding the deep well region and the doped region; a source region disposed on the well region, a drain region disposed on the doped region, and a first pickup region of the first conductivity type disposed on the well region. The first pickup region is laterally in contact with the source region, and the first pickup region, the well region, and the deep well region are electrically connected.Type: ApplicationFiled: June 5, 2023Publication date: December 5, 2024Inventors: Chien-Ming KU, Wei-Jen CHANG, Wen-Hsing HSIEH, Ming-Yang HSU, Chia-Chi HO, Chung-Shih CHIANG
-
Publication number: 20240395808Abstract: A method for forming a semiconductor device structure includes forming a plurality of fin structures from a substrate, each fin structure having first and second semiconductor layers alternatingly stacked, forming an isolation region around the fin structures, forming a first liner layer on exposed surfaces of the fin structures and the isolation region, forming a second liner layer on the first liner layer, selectively removing a portion of the second liner layer so that the second liner layer remains over sidewall of each fin structure, forming an insulating layer on the first and second liner layers, removing the second liner layer, forming a sacrificial gate structure over a portion of the fin structure and the insulating layer, removing a portion of the fin structure not covered by the sacrificial gate structure, forming a source/drain feature such that a gap is formed around and separate the source/drain feature from the insulating layer, and forming a sealing material on the source/drain feature and thType: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Chih-Ching WANG, Wen-Yuan CHEN, Chun-Chung SU, Jon-Hsu HO, Wen-Hsing HSIEH, Kuan-Lun CHENG, Chung-Wei WU, Zhi-Qiang WU
-
Publication number: 20240378715Abstract: The present disclosure provides a method for topography simulation of a physical structure under a topography-changing process. The method includes initializing a voxel mesh as a three-dimensional (3D) representation of a physical structure by a central processing unit (CPU), generating a batch of particles, simulating a flight path of one of the particles with a ray-tracing method by a parallel processing thread in a graphics processing unit (GPU), identifying a surface normal of a voxel unit in the voxel mesh that intersects the flight path by the parallel processing thread in the GPU, passing parameters describing the one of the particles hitting the voxel mesh from the GPU to the CPU, determining a surface reaction between the one of the particles and the voxel unit by the CPU, and updating the voxel mesh based on the determining of the surface reaction.Type: ApplicationFiled: July 18, 2024Publication date: November 14, 2024Inventors: Nuo Xu, Zhengping Jiang, Ji-Ting Li, Yuan Hao Chang, Zhiqiang Wu, Wen-Hsing Hsieh
-
Publication number: 20240379761Abstract: A semiconductor device structure, along with methods of forming such, are described. In one embodiment, a semiconductor device structure is provided. The semiconductor device structure includes a substrate having a front side and a back side opposing the front side, a gate stack disposed on the front side of the substrate, a first source/drain feature and a second source/drain feature disposed in opposing sides of the gate stack, wherein each first source/drain feature and second source/drain feature comprises a first side and a second side, and the second side of the first source/drain feature and the back side of the substrate are at different elevations. The semiconductor device structure also includes a conductive feature in contact with the second side of the first source/drain feature, wherein a portion of the back side of the substrate is exposed to air.Type: ApplicationFiled: July 12, 2024Publication date: November 14, 2024Inventors: Chih-Ching WANG, Wen-Hsing HSIEH, Kuan-Lun CHENG
-
Publication number: 20240369421Abstract: The present disclosure provides embodiments of semiconductor devices. In one embodiment, the semiconductor device includes a dielectric layer and a fin-shaped structure disposed over the dielectric layer. The fin-shaped structure includes a first p-type doped region, a second p-type doped region, and a third p-type doped region, and a first n-type doped region, a second n-type doped region, and a third n-type doped region interleaving the first p-type doped region, the second p-type doped region, and the third p-type doped region. The first p-type doped region, the third p-type doped region and the third n-type doped region are electrically coupled to a first potential. The second p-type doped region, the first n-type doped region and the second n-type doped region are electrically coupled to a second potential different from the first potential.Type: ApplicationFiled: July 12, 2024Publication date: November 7, 2024Inventors: Zi-Ang Su, Ming-Shuan Li, Shu-Hua Wu, Chih Chieh Yeh, Chih-Hung Wang, Wen-Hsing Hsieh
-
Patent number: 12125848Abstract: A semiconductor device structure includes a dielectric layer, a first source/drain feature in contact with the dielectric layer, wherein the first source/drain feature comprises a first sidewall. The structure also includes a second source/drain feature in contact with the dielectric layer and adjacent to the first source/drain feature, wherein the second source/drain feature comprises a second sidewall. The structure also includes an insulating layer disposed over the dielectric layer and between the first sidewall and the second sidewall, wherein the insulating layer comprises a first surface facing the first sidewall, a second surface facing the second sidewall, a third surface connecting the first surface and the second surface, and a fourth surface opposite the third surface. The structure further includes a sealing material disposed between the first sidewall and the first surface, wherein the sealing material, the first sidewall, the first surface, and the dielectric layer are exposed to an air gap.Type: GrantFiled: April 10, 2023Date of Patent: October 22, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Ching Wang, Chun-Chung Su, Chung-Wei Wu, Jon-Hsu Ho, Kuan-Lun Cheng, Wen-Hsing Hsieh, Wen-Yuan Chen, Zhi-Qiang Wu