Patents by Inventor Wen-Hsing Hsieh

Wen-Hsing Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220165842
    Abstract: Embodiments relate to a semiconductor device structure including a first channel layer having a first surface and a second surface, a second channel layer having a first surface and a second surface, and the first and second channel layers are formed of a first material. The structure also includes a first dopant suppression layer in contact with the second surface of the first channel layer, and a second dopant suppression layer parallel to the first dopant suppression layer. The second dopant suppression layer is in contact with the first surface of the second channel layer, and the first and second dopant suppression layers each comprises carbon or fluorine. The structure further includes a gate dielectric layer in contact with the first and second dopant suppression layers and the first surface of the first channel layer, and a gate electrode layer disposed on the gate dielectric layer.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Inventors: Chih-Ching Wang, Wen-Hsing Hsieh, Jon-Hsu HO, Wen-Yuan Chen, Chia-Ying Su, Chung-Wei WU, Zhiqiang Wu
  • Publication number: 20220115530
    Abstract: A semiconductor device according to the present disclosure includes a dielectric fin having a helmet layer, a gate structure disposed over a first portion of the helmet layer and extending along a direction, and a dielectric layer adjacent the gate structure and disposed over a second portion of the helmet layer. A width of the first portion along the direction is greater than a width of the second portion along the direction.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 14, 2022
    Inventors: Yu-Shan Lu, Chung-I Yang, Kuo-Yi Chao, Wen-Hsing Hsieh, Jiun-Ming Kuo, Chih-Ching Wang, Yuan-Ching Peng
  • Publication number: 20220113199
    Abstract: The present disclosure provides embodiments of semiconductor devices. In one embodiment, the semiconductor device includes a dielectric layer and a fin-shaped structure disposed over the dielectric layer. The fin-shaped structure includes a first p-type doped region, a second p-type doped region, and a third p-type doped region, and a first n-type doped region, a second n-type doped region, and a third n-type doped region interleaving the first p-type doped region, the second p-type doped region, and the third p-type doped region. The first p-type doped region, the third p-type doped region and the third n-type doped region are electrically coupled to a first potential. The second p-type doped region, the first p-type doped region and the second p-type doped region are electrically coupled to a second potential different from the first potential.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 14, 2022
    Inventors: Zi-Ang Su, Ming-Shuan Li, Shu-Hua Wu, Chih Chieh Yeh, Chih-Hung Wang, Wen-Hsing Hsieh
  • Publication number: 20220093743
    Abstract: Embodiments of the present disclosure provide semiconductor device structures having at least one T-shaped stacked nanosheet transistor to provide increased effective conductive area across the channel regions. In one embodiment, the semiconductor device structure includes a first channel layer formed of a first material, wherein the first channel layer has a first width, and a second channel layer formed of a second material different from the first material, wherein the second channel layer has a second width less than the first width, and the second channel layer is in contact with the first channel layer. The structure also includes a gate dielectric layer conformally disposed on the first channel layer and the second channel layer, and a gate electrode layer disposed on the gate dielectric layer.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Ching WANG, Wei-Yang LEE, Ming-Chang WEN, Jo-Tzu HUNG, Wen-Hsing HSIEH, Kuan-Lun CHENG
  • Patent number: 11282943
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. The method includes forming a fin structure having first semiconductor layers and second semiconductor layers alternately stacked, forming a sacrificial gate structure over the fin structure, and etching a source/drain (S/D) region thereby forming an opening exposing at least one second semiconductor layer. The method also includes implanting an etch rate modifying species into the at least one second semiconductor layer though the opening thereby forming an implanted portion of the at least one second semiconductor layer. The method further includes selectively etching the implanted portion of the at least one second semiconductor layer, recessing end portions of the first semiconductor layers exposed in the opening, and forming an S/D epitaxial layer in the opening.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Ching Wang, Chung-I Yang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11239341
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Publication number: 20210391443
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. The method includes forming a fin structure having first semiconductor layers and second semiconductor layers alternately stacked, forming a sacrificial gate structure over the fin structure, and etching a source/drain (S/D) region thereby forming an opening exposing at least one second semiconductor layer. The method also includes implanting an etch rate modifying species into the at least one second semiconductor layer though the opening thereby forming an implanted portion of the at least one second semiconductor layer. The method further includes selectively etching the implanted portion of the at least one second semiconductor layer, recessing end portions of the first semiconductor layers exposed in the opening, and forming an S/D epitaxial layer in the opening.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Chih-Ching Wang, Chung-I Yang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20210376163
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary device includes a channel layer, a first source/drain feature, a second source/drain feature, and a metal gate. The channel layer has a first horizontal segment, a second horizontal segment, and a vertical segment connects the first horizontal segment and the second horizontal segment. The first horizontal segment and the second horizontal segment extend along a first direction, and the vertical segment extends along a second direction. The vertical segment has a width along the first direction and a thickness along the second direction, and the thickness is greater than the width. The channel layer extends between the first source/drain feature and the second source/drain feature along a third direction. The metal gate wraps channel layer. In some embodiments, the first horizontal segment and the second horizontal segment are nanosheets.
    Type: Application
    Filed: March 19, 2021
    Publication date: December 2, 2021
    Inventors: Chih-Ching Wang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Zhiqiang Wu
  • Publication number: 20210376119
    Abstract: A method of manufacturing a semiconductor device includes forming a fin structure in which first semiconductor layers and second semiconductor layers are alternatively stacked; forming a sacrificial gate structure over the fin structure; etching a source/drain (S/D) region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming an S/D space; laterally etching the first semiconductor layers through the S/D space, thereby forming recesses; forming a first insulating layer, in the recesses, on the etched first semiconductor layers; after the first insulating layer is formed, forming a second insulating layer, in the recesses, on the first insulating layer, wherein a dielectric constant of the second insulating layer is less than that of the first insulating layer; and forming an S/D epitaxial layer in the S/D space, wherein the second insulating layer is in contact with the S/D epitaxial layer.
    Type: Application
    Filed: March 12, 2021
    Publication date: December 2, 2021
    Inventors: Chih-Ching Wang, Jon-Hsu Ho, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20210351282
    Abstract: A method of manufacturing a semiconductor device, a plurality of fin structures are formed over a semiconductor substrate. The fin structures extend along a first direction and are arranged in a second direction crossing the first direction. A plurality of sacrificial gate structures extending in the second direction are formed over the fin structures. An interlayer dielectric layer is formed over the plurality of fin structures between adjacent sacrificial gate structures. The sacrificial gate structures are cut into a plurality of pieces of sacrificial gate structures by forming gate end spaces along the second direction. Gate separation plugs are formed by filling the gate end spaces with two or more dielectric materials. The two or more dielectric materials includes a first layer and a second layer formed on the first layer, and a dielectric constant of the second layer is smaller than a dielectric constant of the first layer.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Inventors: Cheng-Yi PENG, Wen-Yuan CHEN, Wen-Hsing HSIEH, Yi-Ju HSU, Jon-Hsu HO, Song-Bor LEE, Bor-Zen TIEN
  • Publication number: 20210343858
    Abstract: Embodiments of the present disclosure includes a method of forming a semiconductor device. The method includes providing a substrate having a plurality of first semiconductor layers and a plurality of second semiconductor layers disposed over the substrate. The method also includes patterning the first semiconductor layers and the second semiconductor layers to form a first fin and a second fin, removing the first semiconductor layers from the first and second fins such that a first portion of the patterned second semiconductor layers becomes first suspended nanostructures in the first fin and that a second portion of the patterned second semiconductor layers becomes second suspended nanostructures in the second fin, and doping a threshold modifying impurity into the first suspended nanostructures in the first fin. The impurity causes transistors formed with the first fin and second fin have different threshold voltages.
    Type: Application
    Filed: February 8, 2021
    Publication date: November 4, 2021
    Inventors: Chih-Ching Wang, Chia-Ying Su, Wen-Hsing Hsieh, Kuan-Lun Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11101360
    Abstract: A semiconductor device includes a channel region, a source/drain region adjacent to the channel region, and a source/drain epitaxial layer. The source/drain epitaxial layer includes a first epitaxial layer epitaxially formed on the source/drain region, a second epitaxial layer epitaxially formed on the first epitaxial layer and a third epitaxial layer epitaxially formed on the second epitaxial layer. The first epitaxial layer includes at least one selected from the group consisting of a SiAs layer, a SiC layer and a SiCP layer.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 24, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Wen-Hsing Hsieh, Wen-Yuan Chen, Jon-Hsu Ho, Song-Bor Lee, Bor-Zen Tien
  • Patent number: 11069791
    Abstract: A method of manufacturing a semiconductor device, a plurality of fin structures are formed over a semiconductor substrate. The fin structures extend along a first direction and are arranged in a second direction crossing the first direction. A plurality of sacrificial gate structures extending in the second direction are formed over the fin structures. An interlayer dielectric layer is formed over the plurality of fin structures between adjacent sacrificial gate structures. The sacrificial gate structures are cut into a plurality of pieces of sacrificial gate structures by forming gate end spaces along the second direction. Gate separation plugs are formed by filling the gate end spaces with two or more dielectric materials. The two or more dielectric materials includes a first layer and a second layer formed on the first layer, and a dielectric constant of the second layer is smaller than a dielectric constant of the first layer.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Wen-Yuan Chen, Wen-Hsing Hsieh, Yi-Ju Hsu, Jon-Hsu Ho, Song-Bor Lee, Bor-Zen Tien
  • Patent number: 11043423
    Abstract: A semiconductor structure includes a plurality of first semiconductor layers interleaved with a plurality of second semiconductor layers. The first and second semiconductor layers have different material compositions. A dummy gate stack is formed over an uppermost first semiconductor layer. A first etching process is performed to remove portions of the second semiconductor layer that are not disposed below the dummy gate stack, thereby forming a plurality of voids. The first etching process has an etching selectivity between the first semiconductor layer and the second semiconductor layer. Thereafter, a second etching process is performed to enlarge the voids.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 22, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Szu-Wei Huang, Huan-Sheng Wei, Jon-Hsu Ho, Chih Chieh Yeh, Wen-Hsing Hsieh, Chung-Cheng Wu, Yee-Chia Yeo
  • Publication number: 20210073454
    Abstract: A method of generating a netlist of an IC device includes receiving gate region information of the IC device. The gate region information includes a width of the gate region, the width extending at least from a first edge of an active region to a second edge of the active region, a location of a gate via positioned within the active region and along the width, and a first gate resistance value corresponding to the gate region. The method includes determining a second gate resistance value based on the location and the width, and modifying the netlist based on the second gate resistance value.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 11, 2021
    Inventors: Ke-Ying SU, Jon-Hsu HO, Ke-Wei SU, Liang-Yi CHEN, Wen-Hsing HSIEH, Wen-Koi LAI, Keng-Hua KUO, KuoPei LU, Lester CHANG, Ze-Ming WU
  • Publication number: 20210050427
    Abstract: A semiconductor device includes a source/drain feature disposed over a substrate. The source/drain feature includes a first nanowire, a second nanowire disposed over the first nanowire, a cladding layer disposed over the first nanowire and the second nanowire and a spacer layer extending from the first nanowire to the second nanowire. The device also includes a conductive feature disposed directly on the source/drain feature such that the conductive feature physically contacts the cladding layer and the spacer layer.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 18, 2021
    Inventors: Kuo-Cheng Ching, Ching-Fang Huang, Wen-Hsing Hsieh, Ying-Keung Leung, Chih-Hao Wang, Carlos H. Diaz
  • Patent number: 10846456
    Abstract: A method of generating a netlist of an IC device includes extracting dimensions of a gate region of the IC device, the dimensions including a width of the gate region, the width extending at least from a first edge of an active region to a second edge of the active region, and a distance from a first end of the width to a gate via positioned along the width. A first gate resistance value corresponding to the gate region is received, a second gate resistance value is determined based on the distance and the width, and the netlist is updated based on the first and second gate resistance values.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: November 24, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ke-Ying Su, Jon-Hsu Ho, Ke-Wei Su, Liang-Yi Chen, Wen-Hsing Hsieh, Wen-Koi Lai, Keng-Hua Kuo, KuoPei Lu, Lester Chang, Ze-Ming Wu
  • Publication number: 20200365712
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Patent number: 10811509
    Abstract: A semiconductor device includes a source/drain feature disposed over a substrate. The source/drain feature includes a first nanowire, a second nanowire disposed over the first nanowire, a cladding layer disposed over the first nanowire and the second nanowire and a spacer layer extending from the first nanowire to the second nanowire. The device also includes a conductive feature disposed directly on the source/drain feature such that the conductive feature physically contacts the cladding layer and the spacer layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: October 20, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Ching-Fang Huang, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Ying-Keung Leung
  • Patent number: RE48304
    Abstract: A device includes a semiconductor fin over a substrate, a gate dielectric on sidewalls of the semiconductor fin, and a gate electrode over the gate dielectric. A source/drain region is on a side of the gate electrode. A dislocation plane is in the source/drain region.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: November 10, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhiqiang Wu, Wen-Hsing Hsieh, Hua Feng Chen, Ting-Yun Wu, Carlos H. Diaz, Ya-Yun Cheng, Tzer-Min Shen