Patents by Inventor Wen Liu

Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10164076
    Abstract: A method for forming a tunneling field-effect transistor (TFET) is disclosed. The method includes etching a semiconductor substrate to form a semiconductor protrusion that protrudes out from a top surface of the semiconductor substrate, forming a drain region in lower portion of the semiconductor protrusion, and patterning a gate stack layer to form a gate stack. The gate stack has a gating surface that directly contacts and wraps around a middle portion of the semiconductor protrusion. The method further includes forming a source region in an upper portion of the semiconductor protrusion and forming a source contact over the source region, the source contact have a first width that is larger than a width of the source region.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Chi-Wen Liu, Ming Zhu
  • Patent number: 10164069
    Abstract: Devices and structures that include a gate spacer having a gap or void are described along with methods of forming such devices and structures. In accordance with some embodiments, a structure includes a substrate, a gate stack over the substrate, a contact over the substrate, and a spacer disposed laterally between the gate stack and the contact. The spacer includes a first dielectric sidewall portion and a second dielectric sidewall portion. A void is disposed between the first dielectric sidewall portion and the second dielectric sidewall portion.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Ching-Wei Tsai, Chi-Wen Liu, Ying-Keung Leung
  • Patent number: 10163903
    Abstract: A method includes forming a first semiconductor strip on a substrate, the first semiconductor strip including a first crystalline semiconductor material on a substrate and a second crystalline semiconductor material above the first crystalline semiconductor material. A first portion of the first crystalline semiconductor material in first semiconductor strip is converted to a dielectric material, where a second portion of the first crystalline semiconductor material remains unconverted. Gate structures are formed over the first semiconductor strip and source/drain regions are formed on opposing sides of the gate structures.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu, Chih-Hao Wang
  • Patent number: 10164016
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a fin active region formed on a semiconductor substrate and spanning between a first sidewall of a first shallow trench isolation (STI) feature and a second sidewall of a second STI feature; an anti-punch through (APT) feature of a first type conductivity; and a channel material layer of the first type conductivity, disposed on the APT feature and having a second doping concentration less than the first doping concentration.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Ling-Yen Yeh, Chi-Wen Liu, Chih-Sheng Chang, Yee-Chia Yeo
  • Patent number: 10165378
    Abstract: A display device having a speaker module includes a display, an ultrasonic speaker and an adjustment module. The speaker module includes at least one first speaker module and at least one second speaker module. The first speaker module is disposed at the display and adapted to emit a first ultrasonic wave. The second speaker module is disposed at the display and adapted to emit a second ultrasonic wave. The first ultrasonic wave and the second ultrasonic wave are intersected to form an audible region. The adjustment module is adapted to control the first speaker module and the second speaker module to rotate relative to the display, so as to drive the audible region to target a user.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 25, 2018
    Assignee: WISTRON CORP.
    Inventors: Chen-Yi Liang, Che-Wen Liu, Jia-Hung Lee
  • Patent number: 10163717
    Abstract: A semiconductor device includes a substrate, a first insulating structure, a second insulating structure, at least one first active semiconductor fin, and at least one second active semiconductor fin. The first insulating structure and the second insulating structure are disposed on the substrate. The first active semiconductor fin is disposed on the substrate and has a protruding portion protruding from the first insulating structure. The second active semiconductor fin is disposed on the substrate and has a protruding portion protruding from the second insulating structure. The protruding portion of the first active semiconductor fin and the protruding portion of the second active semiconductor fin have different heights.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Sheng Li, Hsin-Chieh Huang, Chi-Wen Liu
  • Patent number: 10163896
    Abstract: An integrated circuit can include a MOM capacitor formed simultaneously with other devices, such as finFETs. A dielectric layer formed on a substrate has a first semiconductor fin therein and a second semiconductor fin therein. Respective top portions of the fins are removed to form respective recesses in the dielectric layer. First and second electrodes are formed in the recesses. The first and second electrodes and the interjacent dielectric layer form a MOM capacitor.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Patent number: 10163726
    Abstract: In accordance with some embodiments, a device includes first and second p-type transistors. The first transistor includes a first channel region including a first material of a first fin. The first transistor includes first and second epitaxial source/drain regions each in a respective first recess in the first material and on opposite sides of the first channel region. The first transistor includes a first gate stack on the first channel region. The second transistor includes a second channel region including a second material of a second fin. The second material is a different material from the first material. The second transistor includes third and fourth epitaxial source/drain regions each in a respective second recess in the second material and on opposite sides of the second channel region. The second transistor includes a second gate stack on the second channel region.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu
  • Patent number: 10164068
    Abstract: A method comprises removing a portion of a fin to form a trench over a lower portion of the fin, wherein the lower portion is formed of a first semiconductor material, growing a second semiconductor material in the trench to form a middle portion of the fin, forming a first carbon doped layer over the middle portion of the fin, growing the first semiconductor material over the first carbon doped layer to form an upper portion of the fin, replacing outer portions of the upper portion of the fin with a second carbon doped layer and drain/source regions, wherein the first carbon doped layer and the second carbon doped layer are separated by the upper portion of the fin and applying a thermal oxidation process to the middle portion of the fin to form an oxide outer layer.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Guan-Lin Chen, Chao-Hsiung Wang, Chi-Wen Liu
  • Patent number: 10164071
    Abstract: A FinFET device includes a substrate, a fin formed on the substrate, and a gate electrode crossing the fin. The gate electrode includes a head portion and a tail portion, and the tail portion is connected to the head portion and extended toward the substrate. The width of the head portion is greater than that of the tail portion.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Ming Peng, Chi-Wen Liu, Hsin-Chieh Huang, Yi-Ju Hsu, Horng-Huei Tseng
  • Patent number: 10164032
    Abstract: A semiconductor device and a method of forming the semiconductor device is disclosed. A sacrificial film is used to pattern a contact to a semiconductor structure, such as a contact to a source/drain region of a transistor. The contact may include a tapered profile along an axis parallel to the gate electrode such that an outermost width of the contact decreases as the contact extends away from the source/drain region.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung Ying Lee, Chih Chieh Yeh, Jeng-Ya David Yeh, Yuan-Hung Chiu, Chi-Wen Liu, Yee-Chia Yeo
  • Patent number: 10163703
    Abstract: A method for forming a self-aligned contact is provided. In an embodiment, a metal gate is formed on a substrate, and a gate spacer is formed adjacent the metal gate. A conductive plug is formed over the substrate, with the gate spacer disposed between the metal gate and the conductive plug. The metal gate and the conductive plug are recessed. A first dielectric layer is deposited over the gate spacer, over the metal gate, over the conductive plug, and along sidewalls of the metal gate. A first opening is formed in the first dielectric layer exposing the metal gate, and a second opening is formed in the first dielectric layer exposing the conductive plug. The first opening and the second opening are filled with a first conductive material.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chao-Hsun Wang, Shih-Wen Liu, Fu-Kai Yang, Hsien-Cheng Wang, Mei-Yun Wang
  • Patent number: 10164116
    Abstract: FETs and methods for forming FETs are disclosed. A structure comprises a substrate, a gate dielectric and a gate electrode. The substrate comprises a fin, and the fin comprises an epitaxial channel region. The epitaxial channel has a major surface portion of an exterior surface. The major surface portion comprising at least one lattice shift, and the at least one lattice shift comprises an inward or outward shift relative to a center of the fin. The gate dielectric is on the major surface portion of the exterior surface. The gate electrode is on the gate dielectric.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chun-Hsiang Fan, Tung Ying Lee, Chi-Wen Liu
  • Patent number: 10164122
    Abstract: A method includes depositing a first transition metal film having a first transition metal on a substrate and performing a first sulfurization process to the first transition metal film, thereby forming a first transition metal sulfide film. The method further includes depositing a second transition metal film having a second transition metal on the first transition metal sulfide film and performing a second sulfurization process to the second transition metal film, thereby forming a second transition metal sulfide film. The first and the second transition metals are different. The method further includes forming a gate stack, and source and drain features over the second transition metal sulfide film. The gate stack is interposed between the source and drain features. The gate stack, source and drain features, the first transition metal sulfide film and the second transition metal sulfide film are configured to function as a hetero-structure transistor.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Yen Lin, Chi-Wen Liu, Chong-Rong Wu, Xiang-Rui Chang
  • Patent number: 10165223
    Abstract: A pre-selectable video file playback system and method, and a computer program product are provided. Multiple first images are captured from multiple frame images in a first time interval, and two chronological first images thereafter are compared sequentially. A next first image is selected if the next first image is substantially different from a previous first image, and the next first image is not selected if the next first image is substantially the same as the previous first image. By displaying the selected first images, the number of images that users watch may be reduced.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 25, 2018
    Assignee: VIVOTEK INC.
    Inventors: Chien-Wen Liu, Po-Chun Chen
  • Patent number: 10157920
    Abstract: A multiple-fin device includes a substrate and a plurality of fins formed on the substrate. Source and drain regions are formed in the respective fins. A dielectric layer is formed on the substrate. The dielectric layer has a first thickness adjacent one side of a first fin and having a second thickness, different from the first thickness, adjacent an opposite side of the fin. A continuous gate structure is formed overlying the plurality of fins, the continuous gate structure being adjacent a top surface of each fin and at least one sidewall surface of at least one fin. By adjusting the dielectric layer thickness, channel width of the resulting device can be fine-tuned.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Wen Liu, Chao-Hsiung Wang
  • Publication number: 20180356359
    Abstract: Moisture detection and ingression monitoring systems and methods of manufacture are provided. The moisture detection structure includes chip edge sealing structures including at least one electrode forming a capacitor structured to detect moisture ingress within an integrated circuit. The at least one electrode and a second electrode of the capacitor is biased to ground and to a moisture detection circuit or vice versa, respectively.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Fen CHEN, Jeffrey P. GAMBINO, Carole D. GRAAS, Wen LIU, Prakash PERIASAMY
  • Publication number: 20180356358
    Abstract: Moisture detection and ingression monitoring systems and methods of manufacture are provided. The moisture detection structure includes chip edge sealing structures including at least one electrode forming a capacitor structured to detect moisture ingress within an integrated circuit. The at least one electrode and a second electrode of the capacitor is biased to ground and to a moisture detection circuit or vice versa, respectively.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Fen CHEN, Jeffrey P. GAMBINO, Carole D. GRAAS, Wen LIU, Prakash PERIASAMY
  • Publication number: 20180350927
    Abstract: A semiconductor device and a method of forming the semiconductor device is disclosed. A sacrificial film is used to pattern a contact to a semiconductor structure, such as a contact to a source/drain region of a transistor. The contact may include a tapered profile along an axis parallel to the gate electrode such that an outermost width of the contact decreases as the contact extends away from the source/drain region.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Tung Ying Lee, Chih Chieh Yeh, Jeng-Ya David Yeh, Yuan-Hung Chiu, Chi-Wen Liu, Yee-Chia Yeo
  • Publication number: 20180350807
    Abstract: Systems and methods are provided for fabricating semiconductor device structures on a substrate. A first fin structure is formed on a substrate. A second fin structure is formed on the substrate. A first semiconductor material is formed on both the first fin structure and the second fin structure. A second semiconductor material is formed on the first semiconductor material on both the first fin structure and the second fin structure. The first semiconductor material on the first fin structure is oxidized to form a first oxide. The second semiconductor material on the first fin structure is removed. A first dielectric material and a first electrode are formed on the first fin structure. A second dielectric material and a second electrode are formed on the second fin structure.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Chi-Wen LIU, Chao-Hsiung WANG