Patents by Inventor Xi Wang

Xi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190327114
    Abstract: Disclosed are a channel estimation method and device for improving accuracy of channel estimation so as to improve the performance of a receiver. The present application provides a channel estimation method, comprising: determining an equivalent pilot sequence by means of a historical effective frequency offset value; determining a sequence for multiple correlation by using the equivalent pilot sequence; and performing multiple correlation calculation of channel estimation by using the sequence for multiple correlation.
    Type: Application
    Filed: August 21, 2017
    Publication date: October 24, 2019
    Applicant: DATANG MOBILE COMMUNICATIONS EQUIPMENT CO., LTD
    Inventors: Yuetan CHEN, Xi WANG, Quanfei HU
  • Patent number: 10442973
    Abstract: The invention relates to the field of petroleum drilling fluids, and discloses a super-amphiphobic strongly self-cleaning high-performance water-based drilling fluid comprising polymeric super-amphiphobic agent and a drilling method. The polymeric super-amphiphobic agent comprises structural units A derived from acrylamide, structural units B derived from methyl methacrylate, structural units C derived from butyl acrylate, structural units D derived from a compound represented by the following formula (1), structural units E derived from a silane coupler, and nano-titania; wherein the nano-titania is bonded to the polymeric super-amphiphobic agent via the structural unit E, and the silane coupler is a silane coupler having double bonds; R is a C3-C8 perfluoroalkyl group. A water-based drilling fluid additive prepared from the polymeric super-amphiphobic agent in the present invention has excellent wettability, inhibition, lubrication, reservoir protection, and rheology and fluid loss properties.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: October 15, 2019
    Assignee: CHINA UNIVERSITY OF PETROLEUM (BEIJING)
    Inventors: Guancheng Jiang, Xiaoxiao Ni, Lili Yang, Yinbo He, Xiaohu Quan, Zhong Li, Xiaoyong Wang, Yongbin Guo, Fabin Xu, Zhengqiang Deng, Xi Wang, Deli Gao, Kai Wang, Xuwu Luo, Chunyao Peng
  • Publication number: 20190287824
    Abstract: The present invention discloses a method for cleaning substrate without damaging patterned structure on the substrate using ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after micro jet generated by bubble implosion and before said micro jet generated by bubble implosion damaging patterned structure on the substrate, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after temperature inside bubble cooling down to a set temperature, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Application
    Filed: September 20, 2016
    Publication date: September 19, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiao Zhang, YInuo Jin, Zhaowei Jia, Jun Wang, XueJun Li
  • Publication number: 20190283090
    Abstract: The present invention discloses a method for effectively cleaning vias, trenches or recessed areas on a substrate using an ultra/mega sonic device, comprising: applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside vias, trenches or recessed areas on the substrate increasing to a first set value, setting said ultra/mega sonic power supply at frequency f2 and power P2 to drive said ultra/mega sonic device; after the ratio of total bubbles volume to volume inside the vias, trenches or recessed areas reducing to a second set value, setting said ultra/mega sonic power supply at frequency f1 and power P1 again; repeating above steps till the substrate being cleaned.
    Type: Application
    Filed: September 19, 2016
    Publication date: September 19, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Fuping Chen, Fufa Chen, Jian Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Jun Wang, Xuejun Li
  • Patent number: 10416089
    Abstract: This disclosure describes a system and method for documenting and/or quantifying the inspection of the cleanliness of a surface. The documenting is attained through the capture of an image of the surface and uploading said image along with metadata about the image to a place of secure storage such as a company internal server or a web server. The quantification is attained through image analysis of the image, with or without enhancements such as UV light, to derive a value for the amount of residue remaining on the surface. This quantification can be performed on a device and sent to a server, or performed on the server itself after the image has been sent. In all cases, the inspection of cleanliness is documented with or without quantification.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: September 17, 2019
    Assignee: CENTER FOR PHARMACEUTICAL CLEANING INNOVATION CORP
    Inventors: Andrew Walsh, Xi Wang, Nick Downey
  • Patent number: 10419060
    Abstract: A radio-frequency (RF) transceiver front-end circuit includes an antenna, a power amplifier, a low-noise amplifier, a first switch unit and a second switch unit. The power amplifier is connected to a transmitting unit and the antenna to form a transmission path. The low-noise amplifier is connected to a receiving unit and the antenna to form a reception path. The transmission path and the reception path selectively do not include a ?/4 transmission line connected to the antenna. The RF transceiver front-end circuit has a receiving state and a transmitting state. In the receiving state, the first switch unit is controlled and causes the transmission path to have high impedance. In the transmitting state, the second switch unit is controlled and causes the reception path to have high impedance.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: September 17, 2019
    Assignee: NATIONAL CHI NAN UNIVERSITY
    Inventors: Yo-Sheng Lin, Xian-Xi Wang
  • Publication number: 20190273003
    Abstract: A method and apparatus for cleaning semiconductor wafer, combining batch cleaning and single wafer cleaning together. The method includes: taking at least two wafers from a cassette in a load port and putting said wafers into a first tank filled with chemical solution; after processing said wafers in the first tank, taking said wafers out of the first tank and keeping said wafers wet; putting said wafers into a second tank filled with liquid; after processing said wafers in the second tank, taking said wafers out of the second tank and keeping said wafers wet; putting one of said wafers on a chuck inside a single wafer cleaning module; rotating the chuck while applying chemical solution on said wafer; applying deionized water on said wafer; drying said wafer; taking said wafer out of the single wafer cleaning module and putting said wafer back to the cassette in the load port.
    Type: Application
    Filed: April 8, 2019
    Publication date: September 5, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fuping Chen, Liangzhi Xie, Shena Jia, Xi Wang, Xiaoyan Zhang
  • Publication number: 20190260861
    Abstract: Embodiments include a middle frame for a mobile terminal and a mobile terminal. The middle frame for a mobile terminal includes a metal outer frame. An inner side of the metal outer frame is internally connected to a tray using a location structure. A plastic outer frame is formed on the inner side of the metal outer frame using an insert injection molding process, and the plastic outer frame is separately joined with the metal outer frame and the tray for curing.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 22, 2019
    Inventors: Xi Wang, Jinfeng Zhou, Zhengquan Wang, Yukun Guo
  • Patent number: 10388529
    Abstract: A method for preparing a substrate with an insulating buried layer includes: providing a substrate, the substrate having a supporting layer and an insulating layer arranged on a surface of the supporting layer; performing first ion implantation, implanting modified ions into the substrate, wherein a distance from an interface between the insulating layer and the supporting layer to a Gaussian distribution peak of modified ion concentration is less than 50 nm, such that the modified ions form a nano cluster in the insulating layer; and performing a second ion implantation, continuing to implant the modified ions into the insulating layer, wherein the ions are implanted in the same way as the first ion implantation, and a distance from a Gaussian distribution peak of modified ion concentration in this step to the Gaussian distribution peak of modified ion concentration in the first ion implantation is less than 80 nm.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 20, 2019
    Assignee: SHANGHAI SIMGUI TECHNOLOGY CO., LTD.
    Inventors: Xing Wei, Yongwei Chang, Meng Chen, Guoxing Chen, Lu Fei, Xi Wang
  • Publication number: 20190252215
    Abstract: An apparatus for cleaning a semiconductor wafer comprises a chuck (106), an ultra or mega sonic device, an actuator (113), at least one dispenser (108, 209) and a rotating driving mechanism (111). The chuck (106) holds the semiconductor wafer (105). The actuator (113) drives the ultra or mage sonic device to a position above the surface of the semiconductor wafer (105) and a gap is formed between the ultra or mega sonic device and the surface of the semiconductor wafer (105). The at least one dispenser (108, 209) sprays cleaning liquid on the surface of the semiconductor wafer (105).
    Type: Application
    Filed: October 25, 2016
    Publication date: August 15, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Zhenming Chu, Fuping Chen
  • Publication number: 20190244836
    Abstract: An apparatus and a method for wet process on a semiconductor substrate are provided. The apparatus includes a process chamber (1005), a chuck (1002) for holding and positioning a semiconductor substrate (1001) disposed in the process chamber, a rotating driving mechanism (1004) driving the chuck to rotate, a chamber shroud (1006) disposed surrounding the process chamber, at least one vertical driving mechanism driving the chamber shroud to move up or down, a shielding cover (1007), at least one driving device (1008) driving the shielding cover to cover down or lift up, at least one dispenser module (1014) having a dispenser (1030) for spraying liquid to the surface of the semiconductor substrate. When the shielding cover covers above the process chamber, the chamber shroud is moved up to couple with the shielding cover, so as to seal the process chamber for preventing the liquid from splashing out of the process chamber.
    Type: Application
    Filed: October 25, 2016
    Publication date: August 8, 2019
    Applicant: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Xi Wang, Cheng Cheng, Jun Wu
  • Publication number: 20190236948
    Abstract: An intersection management system (IMS) may receive one or more traversing requests from one or more Connected Autonomous Vehicles (CAVs). The IMS may determine a solution space for each of the one or more traversing requests in a space-time resource model of the intersection, find a CAV trajectory allocation in the space-time resource model for each of the one or more traversing requests. The IMS may send an approved reservation to each CAV corresponding to each of the one or more CAV trajectory allocations that have been found. Each of the one or more CAVs may, when an approved reservation corresponding to the CAV may have been received from the IMS, move through the intersection zone as specified in the approved reservation.
    Type: Application
    Filed: November 16, 2018
    Publication date: August 1, 2019
    Applicant: Fujitsu Limited
    Inventors: Nannan Wang, Xi Wang, Paparao Palacharla, Tadashi Ikeuchi
  • Patent number: 10361114
    Abstract: The present disclosure provides a method for preparing a substrate with a carrier trapping center. The method includes: implanting bubbling ions into the semiconductor substrate to form a splitting layer, and implanting modified ions into the insulating layer to form a nano cluster; providing a supporting substrate; bonding the supporting substrate to the semiconductor substrate by using the insulating layer as an intermediate layer; performing a first heat treatment for the bonded substrate such that a splitting layer is formed at the position where the bubbling ions are implanted, and causing the semiconductor substrate to split at the position of the splitting layer; performing rapid thermal annealing for the substrate; and performing a second heat treatment for the rapidly thermally annealed semiconductor substrate to consolidate the bonding interface and form the nano cluster at the position where the modified ions are implanted.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: July 23, 2019
    Assignee: SHANGHAI SIMGUI TECHNOLOGY CO., LTD.
    Inventors: Xing Wei, Yongwei Chang, Meng Chen, Guoxing Chen, Lu Fei, Xi Wang
  • Patent number: 10355779
    Abstract: A method for VON service with guaranteed availability may use probability density functions (PDF) of Q-factor to determine availability of physical links assigned to a virtual link in the VON. Then, a VON mapping may be performed based on the determined availabilities, among other factors.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: July 16, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Inwoong Kim, Xi Wang, Martin Bouda, Olga Vassilieva, Qiong Zhang, Paparao Palacharla, Tadashi Ikeuchi
  • Patent number: 10348439
    Abstract: A control system for spectral slot assignment in flexible grid optical networks determines, for a given optical path, a physical source node, a physical destination node, and physical intermediate nodes, determines the number of contiguous spectral slots to allocate for traffic on the path, identifies candidate combinations of spectral slots available for the traffic, and creates an auxiliary graph for the path. The auxiliary graph includes auxiliary links representing candidate combinations of spectral slots, virtual nodes representing pairs of neighboring physical nodes, and auxiliary links between each pair of virtual source-side and destination-side intermediate nodes representing either pass-through traffic or wavelength shifted traffic.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: July 9, 2019
    Assignee: Fujitsu Limited
    Inventors: Inwoong Kim, Xi Wang, Paparao Palacharla, Tadashi Ikeuchi
  • Patent number: 10344063
    Abstract: The present invention provides for recombinant Endo-S mutants that exhibit reduced hydrolysis activity and increased transglycosylation activity for the synthesis of glycoproteins wherein a desired sialylated oxazoline or synthetic oligosaccharide oxazoline is added to a core fucosylated or nonfucosylated GlcNAc-protein acceptor. Such recombinant Endo-S mutants are useful for efficient glycosylation remodeling of IgG1-Fc domain to provide different antibody glycoforms carrying structurally well-defined Fc N-glycans.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: July 9, 2019
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Lai-Xi Wang, Wei Huang
  • Patent number: 10336931
    Abstract: The present invention relates to the well drilling field in petrochemical industry, in particular to use of dual-cation fluorocarbon surfactant as amphiphobic wettability reversal agent in drilling fluid. The dual-cation fluorocarbon surfactant is a dual-cation fluorocarbon surfactant of which the cation part is represented by the following formula (1). The dual-cation fluorocarbon surfactant of the present invention can serve as wettability reversal agent when it is used for oil-gas drilling to enable rock amphiphobic, and is an amphiphobic wettability reversal agent which can cause rock surface to be non-hydrophilic and non-lipophilic. Using of dual-cation fluorocarbon surfactant, especially when drilling highly hydrous mud shale, can avoid permeation of water and oil into the rock effectively and thereby a capillary phenomenon can be prevented, and an effect of stabilizing the well wall and protecting the reservoir is attained.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 2, 2019
    Assignee: CHINA UNIVERSITY OF PETROLEUM (BEIJING)
    Inventors: Guancheng Jiang, Deli Gao, Guangchang Ma, Jinsheng Sun, Xi Wang, Xiaolin Pu, Xianzhu Wu, Xiaoxiao Ni, Xianmin Zhang, Le Wang, Yinbo He, Fan Liu, Lili Yang, Tengfei Dong
  • Patent number: 10341201
    Abstract: In one or more embodiments, one or more systems, methods, and/or processes may determine one or more auxiliary edges that bypass at least one vertex of vertices that represent physical nodes of a network domain; evaluate at least one edge, that includes the one or more auxiliary edges and that interconnect the vertices, to evaluate a portion of the vertices that excludes the at least one vertex that was bypassed to identify at least one vertex that is associated with at least one service function of a service function chain request specifying service functions to be performed via at least a portion of physical nodes of network domains; and configure a first physical node of the physical nodes of the network domain and associated with the at least one vertex that is associated with the at least one service function to process data via the at least one service function.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 2, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Qiong Zhang, Xi Wang, Paparao Palacharla, Tadashi Ikeuchi
  • Publication number: 20190194711
    Abstract: The present invention provides for recombinant Endo-S2 mutants (named Endo-S2 glycosynthases) that exhibit reduced hydrolysis activity and increased transglycosylation activity for the synthesis of glycoproteins wherein a desired sugar chain is added to a fucosylated or nonfucosylated GlcNAc-IgG acceptor. As such, the present invention allows for the synthesis and remodeling of therapeutic antibodies thereby providing for certain biological activities, such as, prolonged half-life time in vivo, less immunogenicity, enhanced in vivo activity, increased targeting ability, and/or ability to deliver a therapeutic agent.
    Type: Application
    Filed: January 17, 2017
    Publication date: June 27, 2019
    Inventors: LAI-XI WANG, QIANG YANG, TIEZHENG LI, XIN TONG
  • Patent number: D852857
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: July 2, 2019
    Assignee: Beijing Ling Technology Co., Ltd.
    Inventors: Jiabin He, Xi Wang, Jinbo Huang, Ke Ma, Jiawei Gu