Patents by Inventor Xiao Hu Liu

Xiao Hu Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7947907
    Abstract: An electronic structure including a substrate having a having a dielectric layer with at least one metallic interconnect structure within and a dielectric barrier layer above the dielectric layer, and a multi-layer hardmask stack coated with a self-assembled layer, where the self-assembled layer is a pattern of nanoscale and/or microscale voids which are generated into the dielectric barrier layer and into the dielectric layer next to the metallic interconnect structure to create columns in the dielectric barrier layer and dielectric layer therein. Electronics structures prepared with the process are useful to prepare electronics devices, such as computers and the like.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Matthew Earl Colburn, Ricardo Alves Donaton, Conal E Murray, Satyanarayana Venkata Nitta, Sampath Purushothaman, Sujatha Sankaran, Thedorus Eduardos Standaert, Xiao Hu Liu
  • Patent number: 7935588
    Abstract: NFET and PFET devices with separately strained channel regions, and methods of their fabrication is disclosed. A stressing layer overlays the device in a manner that the stressing layer is non-conformal with respect the gate. The non-conformality of the stressing layer increases the amount of stress that is imparted onto the channel of the device, in comparison to stressing layers which are conformal. The method for overlaying in a non-conformal manner includes non-conformal deposition techniques, as well as, conformal depositions where subsequently the layer is turned into a non-conformal one by etching.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Xiao Hu Liu
  • Publication number: 20110034047
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Gareth Geoffrey HOUGHAM, S. Jay CHEY, James Patrick DOYLE, Xiao Hu LIU, Christopher V. JAHNES, Paul Alfred LAURO, Nancy C. LaBIANCA, Michael J. ROOKS
  • Patent number: 7883919
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20110012176
    Abstract: An electronic device includes a conductive channel defining a crystal structure and having a length and a thickness tC; and a dielectric film of thickness tg in contact with a surface of the channel. Further, the film comprises a material that exerts one of a compressive or a tensile force on the contacted surface of the channel such that electrical mobility of the charge carriers (electrons or holes) along the channel length is increased due to the compressive or tensile force in dependence on alignment of the channel length relative to the crystal structure. Embodiments are given for chips with both hole and electron mobility increased in different transistors, and a method for making such a transistor or chip.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 20, 2011
    Inventors: Dureseti CHIDAMBARRAO, Xiao Hu LIU, Lidija SEKARIC
  • Publication number: 20110012177
    Abstract: A structure and a method for a semiconductor including a nanostructure semiconductor channel. The semiconductor may include a dielectric and an electrode, the electrode attached to the dielectric, a semiconductor channel may be disposed proximate to the dielectric, wherein the semiconductor channel has an electric mobility and is configured to have at least one dimension, and wherein the dielectric may be configured to apply a force at the at least one dimension.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 20, 2011
    Inventors: Dureseti Chidambarrao, Oki Gunawan, Xiao Hu Liu, Amlan Majumdar, Lidija Sekaric, Jeffrey W. Sleight
  • Publication number: 20100328984
    Abstract: A piezo-effect transistor (PET) device includes a piezoelectric (PE) material disposed between first and second electrodes; and a piezoresistive (PR) material disposed between the second electrode and a third electrode, wherein the first electrode comprises a gate terminal, the second electrode comprises a common terminal, and the third electrode comprises an output terminal such that an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns
  • Patent number: 7848135
    Abstract: A piezoelectrically programmed, non-volatile memory cell structure includes a programmable piezo-resistive hysteretic material (PRHM) that is capable of being interconverted between a low resistance state and high resistance state through applied pressure cycling thereto; a piezoelectric material mechanically coupled to the PRHM such that an applied voltage across the piezoelectric material results in one of a tensile or compressive stress applied to the PRHM, depending upon the polarity of the applied voltage; and one or more electrodes in electrical communication with the PRHM, wherein the one or more electrodes are configured to provide a write programming current path through the piezoelectric material and a read current path through the PRHM.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Xiao Hu Liu, Glenn J. Martyna, Martin Muser, Dennis M. Newns
  • Patent number: 7790577
    Abstract: An integrated circuit chip and a method of fabricating an integrated circuit chip. The integrated circuit chip includes: a set of wiring levels stacked from a first wiring level to a last wiring level; and a respective void in each wiring level of two or more wiring levels of the set wiring levels, each respective void extending in a continuous ring parallel and proximate to a perimeter of the integrated circuit chip, a void of a higher wiring level stacked directly over but not contacting a void of a lower wiring level, the respective voids forming a crack stop.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Xiao Hu Liu, Chih-Chao Yang, Haining Sam Yang
  • Publication number: 20100081259
    Abstract: A method for generating patterned strained regions in a semiconductor device is provided. The method includes directing a light-emitting beam locally onto a surface portion of a semiconductor body; and manipulating a plurality of dislocations located proximate to the surface portion of the semiconductor body utilizing the light-emitting beam, the light-emitting beam being characterized as having a scan speed, so as to produce the patterned strained regions.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chung Woh Lai, Xiao Hu Liu, Anita Madan, Klaus W. Schwarz, J. Campbell Scott
  • Publication number: 20100073997
    Abstract: A piezoelectrically programmed, non-volatile memory cell structure includes a programmable piezo-resistive hysteretic material (PRHM) that is capable of being interconverted between a low resistance state and high resistance state through applied pressure cycling thereto; a piezoelectric material mechanically coupled to the PHRM such that an applied voltage across the piezoelectric material results in one of a tensile or compressive stress applied to the PRHM, depending upon the polarity of the applied voltage; and one or more electrodes in electrical communication with the PRHM, wherein the one or more electrodes are configured to provide a write programming current path through the piezoelectric material and a read current path through the PRHM.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Xiao Hu Liu, Glenn J. Martyna, Martin Muser, Dennis M. Newns
  • Publication number: 20100012950
    Abstract: An integrated circuit chip and a method of fabricating an integrated circuit chip. The integrated circuit chip includes: a set of wiring levels stacked from a first wiring level to a last wiring level; and a respective void in each wiring level of two or more wiring levels of the set wiring levels, each respective void extending in a continuous ring parallel and proximate to a perimeter of the integrated circuit chip, a void of a higher wiring level stacked directly over but not contacting a void of a lower wiring level, the respective voids forming a crack stop.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiao Hu Liu, Chih-Chao Yang, Haining Sam Yang
  • Publication number: 20100013043
    Abstract: An integrated circuit chip and a method of fabricating an integrated circuit chip. The integrated circuit chip includes: a continuous first stress ring proximate to a perimeter of the integrated circuit chip, respective edges of the first stress ring parallel to respective edges of the integrated circuit chip; a continuous second stress ring between the first stress ring and the perimeter of the integrated circuit chip, respective edges the second stress ring parallel to respective edges of the integrated circuit chip, the first and second stress rings having opposite internal stresses; a continuous gap between the first stress ring and the second stress ring; and a set of wiring levels from a first wiring level to a last wiring level on the substrate.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiao Hu Liu, Chih-Chao Yang, Haining Sam Yang
  • Publication number: 20090304951
    Abstract: A method for forming a ultralow dielectric constant layer with controlled biaxial stress is described incorporating the steps of forming a layer containing Si, C, O and H by one of PECVD and spin-on coating and curing the film in an environment containing very low concentrations of oxygen and water each less than 10 ppm. A material is also described by using the method with a dielectric constant of not more than 2.8. The invention overcomes the problem of forming films with low biaxial stress less than 46 MPa.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos Dimitrios Dimitrakopoulos, Stephen McConnell Gates, Alfred Grill, Michael Wayne Lane, Eric Gerhard Liniger, Xiao Hu Liu, Son Van Nguyen, Deborah Ann Neumayer, Thomas McCarroll Shaw
  • Publication number: 20090263991
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 22, 2009
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20090214780
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Application
    Filed: May 7, 2009
    Publication date: August 27, 2009
    Applicant: International Business Machines
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, Joseph Zinter, JR., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Patent number: 7579069
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, James Patrick Doyle, Joseph Zinter, Jr., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Patent number: 7556979
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20090169886
    Abstract: Methods for the fabrication of negative coefficient thermal expansion engineered elements, and particularly, wherein such elements provide for fillers possessing a low or even potentially zero coefficient thermal expansion and which are employable as fillers for polymers possessing high coefficients of thermal expansion. Further, disclosed are novel structures, which are obtained by the inventive methods.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gareth G. Hougham, Vijayeshwar D. Khanna, Xiao Hu Liu, Gerard McVicker
  • Patent number: 7525161
    Abstract: NMOS and PMOS device structures with separately strained channel regions and methods of their fabrication are disclosed. The source and the drain of the NMOS device is epitaxially grown of a material which causes a shift in the strain of the NMOS device channel in the tensile direction. While, the source and the drain of the PMOS device is epitaxially grown of a material which causes a shift in the strain of the PMOS device channel in the compressive direction.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Xiao Hu Liu, Qiqing Christine Ouyang, Siddhartha Panda, Haizhou Yin