Patents by Inventor Xiaobin Wang

Xiaobin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10684778
    Abstract: Various embodiments of the present invention are generally directed to an apparatus and associated method for updating data in a non-volatile memory array. In accordance with some embodiments, a memory block is formed with a plurality of types of memory cell sectors arranged in data pages of a first type and log pages of a second type that can be updated in-place. A first updated sector is written to a first log page while maintaining an outdated sector in an original data page, and overwritten with a second updated sector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: June 16, 2020
    Assignee: Seagate Technology LLC
    Inventors: Yiran Chen, Hai Li, Wenzhong Zhu, Xiaobin Wang, Yuan Yan, Harry Hongyue Liu
  • Patent number: 10665551
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. A semiconductor substrate of a first conductivity type is provided. A plurality of first trenches arranged side by side in a first stripe layout extending along a first direction in a first preset area of the semiconductor substrate are formed. A plurality of second trenches arranged side by side in a second stripe layout extending along a second direction perpendicular to the first direction in a second preset area of the semiconductor substrate are formed. The plurality of first trenches and the plurality of second trenches are filled with a conductive material so as to form a plurality of control gates.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: May 26, 2020
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR (CAYMAN) LTD.
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Publication number: 20200119185
    Abstract: A semiconductor device formed on a semiconductor substrate includes: an epitaxial layer overlaying the semiconductor substrate; a drain formed on back of the semiconductor substrate; a drain region that extends into the epitaxial layer; an active region comprising: a body disposed in the epitaxial layer; a source embedded in the body; a gate trench extending into the epitaxial layer; a gate disposed in the gate trench; an active region contact trench extending through the source and the body; and an active region contact electrode disposed within the active region contact trench; and an island region under the active region contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer; wherein the active region contact trench has a non-uniform depth.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 16, 2020
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Patent number: 10593759
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10559624
    Abstract: The present invention is directed to a memory cell that includes a magnetic tunnel junction (MTJ) memory element, which has a low resistance state and a high resistance state, and a two-terminal selector coupled to the MTJ memory element in series. The MTJ memory element includes a magnetic free layer and a magnetic reference layer with an insulating tunnel junction layer interposed therebetween. The two-terminal selector has an insulative state and a conductive state. The two-terminal selector in the conductive state has substantially lower resistance when switching the MTJ memory element from the low to high resistance state than from the high to low resistance state. The voltages applied to the memory cell to respectively switch the MTJ memory element from the low to high resistance state and from the high to low resistance state may be substantially same.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 11, 2020
    Assignee: Avalanche Technology, Inc.
    Inventors: Hongxin Yang, Xiaojie Hao, Jing Zhang, Xiaobin Wang, Bing K. Yen
  • Patent number: 10535764
    Abstract: Fabricating a semiconductor device includes: forming a first gate trench and a second gate trench in an epitaxial layer overlaying a semiconductor substrate; depositing gate material in the first gate trench to form a first gate and depositing gate material in the second gate trench to form a second gate; forming a body; forming a source; forming an active region contact trench that extends through the source and the body, and a gate contact trench within the second gate; forming an island region under the active region contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer; and disposing a first electrode within the active region contact trench and a second electrode within the gate contact trench.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 14, 2020
    Assignee: Alpha and Omega Semiconductor Limited
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Publication number: 20200010714
    Abstract: Embodiments herein provide for a waterborne PVDF coating composition, the preparation method and use thereof. The coating composition includes a waterborne polyvinyl fluoride dispersion, a waterborne carboxyl acrylic resin, and a crosslinking agent. The resulting coating gives excellent film performance which is comparative to that of solvent borne PVDF formulations. Meanwhile, the coating composition requires smaller amount of crosslinking agent in the formulation, and lower heating temperature for curing process, as compared with solvent borne PVDF formulations.
    Type: Application
    Filed: February 8, 2017
    Publication date: January 9, 2020
    Applicant: Akzo Nobel Coatings International B.V.
    Inventors: Xiaobin WANG, Weifeng DAI, Xin LV, Limin SHAO
  • Patent number: 10519561
    Abstract: A steering gear housing and method of manufacturing same are provided. The steering gear housing is comprised of aluminum alloy and is at least partially anodized. The steering gear housing defines a plurality of mounting apertures. A plurality of nuts is fit into a respective one of the mounting apertures for use in mounting to a vehicle. Each of the nuts defines a plurality of splines for establishing a press-fit relationship between the mounting apertures and the nuts. The method involves casting a steering gear housing defining a plurality of mounting apertures out of aluminum alloy. Next, the casted steering gear housing is at least partially anodized. After anodization, a plurality of nuts is fit into respective ones of the mounting apertures. The nuts define splines for allowing a press-fit relationship to be established between the mounting apertures and the nuts.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: December 31, 2019
    Assignee: CHINA AUTOMOTIVE SYSTEMS, INC.
    Inventors: Haimian Cai, Shen Li, Bokai Jin, Gangchun Xu, Min Nie, Xiaobin Wang
  • Publication number: 20190333994
    Abstract: Semiconductor devices includes a thin epitaxial layer (nanotube) formed on sidewalls of mesas formed in a semiconductor layer. In one embodiment, a semiconductor device includes a first epitaxial layer and a second epitaxial layer formed on mesas of the semiconductor layer. The thicknesses and doping concentrations of the first and second epitaxial layers and the mesa are selected to achieve charge balance in operation. In another embodiment, the semiconductor body is lightly doped and the thicknesses and doping concentrations of the first and second epitaxial layers are selected to achieve charge balance in operation.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10418899
    Abstract: A switch circuit includes a first MOS transistor and a second MOS transistor of a same conductivity type connected in parallel between a first terminal and a second terminal. The first and second MOS transistors have respective gate terminals coupled to the control terminal to receive a control signal to turn the switch circuit on or off where the control signal transitions from a first voltage level to a second voltage level at a slow rate of change. The first MOS transistor has a first threshold voltage and the second MOS transistor has a second threshold voltage where the first threshold voltage is less than the second threshold voltage.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 17, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik K. Lui, Daniel S. Ng, Xiaobin Wang
  • Patent number: 10396158
    Abstract: Semiconductor devices are formed using a pair of thin epitaxial layers (nanotubes) of opposite conductivity type formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes a first termination cell formed in the termination area at an interface to the active area, the termination cell being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the first termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: August 27, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10224367
    Abstract: The present invention is directed to a memory device that includes an array of memory cells. Each of the memory cells includes a memory element connected to a two-terminal selector element. The two-terminal selector element includes a first electrode and a second electrode with a switching layer interposed therebetween. The switching layer includes a plurality of metal-rich clusters embedded in a nominally insulating matrix. One or more conductive paths are formed in the switching layer when an applied voltage to the memory cell exceeds a threshold level. Each of the memory cells may further include an intermediate electrode interposed between the memory element and the two-terminal selector element. The two-terminal selector element may further include a third electrode formed between the first electrode and the switching layer, and a fourth electrode formed between the second electrode and the switching layer.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: March 5, 2019
    Assignee: Avalanche Technology, Inc.
    Inventors: Hongxin Yang, Kimihiro Satoh, Xiaobin Wang
  • Publication number: 20190043947
    Abstract: Semiconductor devices are formed using a pair of thin epitaxial layers (nanotubes) of opposite conductivity type formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes a first termination cell formed in the termination area at an interface to the active area, the termination cell being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the first termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
    Type: Application
    Filed: July 26, 2018
    Publication date: February 7, 2019
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 10153017
    Abstract: The present invention is directed to a method for sensing the resistance state of a memory cell that includes an MTJ memory element coupled to a two-terminal selector element in series. The method includes the steps of raising a cell voltage across the memory cell above a threshold voltage for the selector element to become conductive; decreasing the cell voltage to a first sensing voltage and measuring a first sensing current passing through the memory cell, the selector element being nominally conductive irrespective of the resistance state of the MTJ memory element at the first sensing voltage; and further decreasing the cell voltage to a second sensing voltage and measuring a second sensing current, the selector element being nominally conductive if the MTJ memory element is in the low resistance state or nominally insulative if the MTJ memory element is in the high resistance state at the second sensing voltage.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: December 11, 2018
    Assignee: Avalanche Technology, Inc.
    Inventors: Hongxin Yang, Xiaobin Wang, Jing Zhang, Xiaojie Hao, Zihui Wang, Kimihiro Satoh
  • Publication number: 20180337274
    Abstract: Fabricating a semiconductor device includes: forming a first gate trench and a second gate trench in an epitaxial layer overlaying a semiconductor substrate; depositing gate material in the first gate trench to form a first gate and depositing gate material in the second gate trench to form a second gate; forming a body; forming a source; forming an active region contact trench that extends through the source and the body, and a gate contact trench within the second gate; forming an island region under the active region contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer; and disposing a first electrode within the active region contact trench and a second electrode within the gate contact trench.
    Type: Application
    Filed: July 31, 2018
    Publication date: November 22, 2018
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Publication number: 20180323155
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. A semiconductor substrate of a first conductivity type is provided. A plurality of first trenches arranged side by side in a first stripe layout extending along a first direction in a first preset area of the semiconductor substrate are formed. A plurality of second trenches arranged side by side in a second stripe layout extending along a second direction perpendicular to the first direction in a second preset area of the semiconductor substrate are formed. The plurality of first trenches and the plurality of second trenches are filled with a conductive material so as to form a plurality of control gates.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 8, 2018
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Patent number: 10074742
    Abstract: A semiconductor device formed on a semiconductor substrate, comprising: an epitaxial layer overlaying the semiconductor substrate; a drain formed on back of the semiconductor substrate; a drain region that extends into the epitaxial layer; an active region; and an island region under the contact trench and disconnected from the body, the island region having an opposite polarity as the epitaxial layer. The active region comprises: a body disposed in the epitaxial layer; a source embedded in the body; a gate trench extending into the epitaxial layer; a gate disposed in the gate trench; an active region contact trench extending through the source and the body; and an active region contact electrode disposed within the active region contact trench.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 11, 2018
    Assignee: Alpha and Omega Semiconductor Limited
    Inventors: Anup Bhalla, Xiaobin Wang, Ji Pan, Sung-Po Wei
  • Patent number: 10062755
    Abstract: Semiconductor devices are formed using a thin epitaxial layer (nanotube) formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes an array of termination cells formed in the termination area, the array of termination cells including a first termination cell at an interface to the active area to a last termination cell, each termination cell in the array of termination cells being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the last termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: August 28, 2018
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Publication number: 20180240844
    Abstract: The present invention is directed to a memory cell that includes a magnetic tunnel junction (MTJ) memory element, which has a low resistance state and a high resistance state, and a two-terminal selector coupled to the MTJ memory element in series. The MTJ memory element includes a magnetic free layer and a magnetic reference layer with an insulating tunnel junction layer interposed therebetween. The two-terminal selector has an insulative state and a conductive state. The two-terminal selector in the conductive state has substantially lower resistance when switching the MTJ memory element from the low to high resistance state than from the high to low resistance state. The voltages applied to the memory cell to respectively switch the MTJ memory element from the low to high resistance state and from the high to low resistance state may be substantially same.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: Hongxin Yang, Xiaojie Hao, Jing Zhang, Xiaobin Wang, Bing K. Yen
  • Patent number: 10032728
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. The trench MOSFET device comprises a semiconductor substrate of a first conductivity type. The semiconductor substrate has a plurality of first trenches arranged side by side in a first preset area of the semiconductor substrate extending along a first direction and a plurality of second trenches arranged side by side in a second preset area of the semiconductor substrate extending along a second direction perpendicular to the first direction. A control gate is formed in each of the pluralities of first and second trenches. A body region of a second conductivity type is formed at a top portion of the semiconductor substrate near sidewalls of the pluralities of first and second trenches. A source region of the first conductivity type is formed on a top portion of the body region.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 24, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup