Patents by Inventor Xiaomeng Chen

Xiaomeng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160204200
    Abstract: A semiconductor device includes a first channel having a first linear surface and a first non-linear surface. The semiconductor device includes a first dielectric region surrounding the first channel. The semiconductor device includes a second channel having a third linear surface and a third non-linear surface. The semiconductor device includes a second dielectric region surrounding the second channel. The semiconductor device includes a gate electrode surrounding the first dielectric region and the second dielectric region.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Xiaomeng Chen, Chien-Hong Chen, Shih-Chang Liu, Zhiqiang Wu
  • Publication number: 20160196983
    Abstract: A semiconductor device includes a channel having a first linear surface and a first non-linear surface. The first non-linear surface defines a first external angle of about 80 degrees to about 100 degrees and a second external angle of about 80 degrees to about 100 degrees. The semiconductor device includes a dielectric region covering the channel between a source region and a drain region. The semiconductor device includes a gate electrode covering the dielectric region between the source region and the drain region.
    Type: Application
    Filed: March 17, 2016
    Publication date: July 7, 2016
    Inventors: Xiaomeng Chen, Chien-Hong Chen, Shih-Chang Liu, Zhiqiang Wu
  • Patent number: 9385136
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements within a memory cell. A copolymer solution having first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material having a regular pattern of micro-domains of the second polymer species within a polymer matrix having the first polymer species. The second polymer species is then removed resulting with a pattern of holes within the polymer matrix. An etch is then performed through the holes utilizing the polymer matrix as a hard-mask to form a substantially identical pattern of holes in a dielectric layer disposed over a seed layer disposed over the substrate surface. Epitaxial deposition onto the seed layer then utilized to grow a substantially uniform pattern of discrete storage elements within the dielectric layer.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Tsung-Yu Chen, Cheng-Te Lee, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160163684
    Abstract: A package component includes a surface dielectric layer including a planar top surface, a metal pad in the surface dielectric layer and including a second planar top surface level with the planar top surface, and an air trench on a side of the metal pad. The sidewall of the metal pad is exposed to the air trench.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: Bruce C.S. Chou, Chen-Jong Wang, Ping-Yin Liu, Jung-Kuo Tu, Tsung-Te Chou, Xin-Hua Huang, Hsun-Chung Kuang, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160155665
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160118577
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Application
    Filed: January 8, 2016
    Publication date: April 28, 2016
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20160111520
    Abstract: A method of manufacturing a semiconductor device includes forming a barrier structure over a substrate. The method further includes forming a channel layer over the barrier structure. The method further includes depositing an active layer over the channel layer. The method further includes forming source/drain electrodes over the channel layer. The method further includes annealing the source/drain electrodes to form ohmic contacts in the active layer under the source/drain electrodes.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Po-Chun Liu, Chi-Ming Chen, Chen-Hao Chiang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9299784
    Abstract: A semiconductor device includes a first channel having a first linear surface and a first non-linear surface. The semiconductor device includes a first dielectric region surrounding the first channel. The semiconductor device includes a second channel having a third linear surface and a third non-linear surface. The semiconductor device includes a second dielectric region surrounding the second channel. The semiconductor device includes a gate electrode surrounding the first dielectric region and the second dielectric region.
    Type: Grant
    Filed: October 6, 2013
    Date of Patent: March 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Xiaomeng Chen, Zhiqiang Wu, Shih-Chang Liu, Chien-Hong Chen
  • Patent number: 9299768
    Abstract: A semiconductor device includes a channel having a first linear surface and a first non-linear surface. The first non-linear surface defines a first external angle of about 80 degrees to about 100 degrees and a second external angle of about 80 degrees to about 100 degrees. The semiconductor device includes a dielectric region covering the channel between a source region and a drain region. The semiconductor device includes a gate electrode covering the dielectric region between the source region and the drain region.
    Type: Grant
    Filed: October 6, 2013
    Date of Patent: March 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Xiaomeng Chen, Zhiqiang Wu, Shih-Chang Liu, Chien-Hong Chen
  • Patent number: 9281203
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements comprising a substantially equal size within a memory cell. A copolymer solution comprising first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material comprising a regular pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first or second polymer species is then removed resulting with a pattern of micro-domains or the polymer matrix with a pattern of holes, which may be utilized as a hard-mask to form a substantially identical pattern of discrete storage elements through an etch, ion implant technique, or a combination thereof.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 8, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Cheng-Te Lee, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9257636
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9257399
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9245991
    Abstract: A semiconductor device includes a substrate, a channel layer over the substrate, an active layer over the channel layer, and a barrier structure between the substrate and the channel layer. The active layer is configured to cause a two dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active layer. The barrier structure is configured to block diffusion of at least one of a material of the substrate or a dopant toward the channel layer.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 26, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chun Liu, Chi-Ming Chen, Chen-Hao Chiang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 9214539
    Abstract: Some embodiments of the present disclosure relates to a hybrid gate dielectric layer that has good interface and bulk dielectric properties. Surface traps can degrade device performance and cause large threshold voltage shifts in III-N HEMTs. This disclosure uses a hybrid ALD (atomic layer deposited)-oxide layer which is a combination of H2O-based and O3/O2-based oxide layers that provide both good interface and good bulk dielectric properties to the III-N device. The H2O-based oxide layer provides good interface with the III-N surface, whereas the O3/O2-based oxide layer provides good bulk properties.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Han-Chin Chiu, King-Yuen Wong, Cheng-Yuan Tsai, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20150357296
    Abstract: A method of forming a hybrid bonding structure includes depositing an etch stop layer over surface of a substrate, wherein the substrate comprises a conductive structure, and the etch stop layer contacts the conductive structure. The method further includes depositing a dielectric material over the etch stop layer. The method further includes depositing a first diffusion barrier layer over the dielectric material. The method further includes forming an opening extending through the etch stop layer, the dielectric material and the diffusion barrier layer. The method further includes lining the opening with a second diffusion barrier layer. The method further includes depositing a conductive pad on the second diffusion barrier layer in the opening, wherein a surface of the first diffusion barrier layer is aligned with a surface of the conductive pad.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 10, 2015
    Inventors: Ping-Yin LIU, Szu-Ying CHEN, Chen-Jong WANG, Chih-Hui HUANG, Xin-Hua HUANG, Lan-Lin CHAO, Yeur-Luen TU, Chia-Shiung TSAI, Xiaomeng CHEN
  • Publication number: 20150349160
    Abstract: A photo-sensitive device includes a uniform layer, a gradated buffer layer over the uniform layer, a silicon layer over the gradated buffer layer, a photo-sensitive light-sensing region in the uniform layer and the silicon layer, a device layer on the silicon layer, and a carrier wafer bonded to the device layer.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Yu-Hung Cheng, Chia-Shiung Tsai, Cheng-Ta Wu, Xiaomeng Chen, Yen-Chang Chu, Yeur-Luen Tu
  • Patent number: 9170325
    Abstract: Some implementations provide techniques and arrangements for distance measurements between computing devices. Some examples determine a distance between devices based at least in part on a propagation time of audio tones between the devices. Further, some examples determine the arrival time of the audio tones by performing autocorrelation on streaming data corresponding to recorded sound to determine a timing of an autocorrelation peak indicative of a detection of an audio tone in the streaming data. In some cases, cross correlation may be performed on the streaming data in a search window to determine a timing of a cross correlation peak indicative of the detection of the audio tone in the streaming data. The location of the search window in time may be determined based at least in part on the timing of the detected autocorrelation peak.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 27, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Zengbin Zhang, David Chiyuan Chu, Thomas Moscibroda, Xiaomeng Chen, Feng Zhao
  • Publication number: 20150287737
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of discrete storage elements within a memory cell. A copolymer solution having first and second polymer species is spin-coated onto a surface of a substrate and subjected to self-assembly into a phase-separated material having a regular pattern of micro-domains of the second polymer species within a polymer matrix having the first polymer species. The second polymer species is then removed resulting with a pattern of holes within the polymer matrix. An etch is then performed through the holes utilizing the polymer matrix as a hard-mask to form a substantially identical pattern of holes in a dielectric layer disposed over a seed layer disposed over the substrate surface. Epitaxial deposition onto the seed layer then utilized to grow a substantially uniform pattern of discrete storage elements within the dielectric layer.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Chih-Ming Chen, Tsung-Yu Chen, Cheng-Te Lee, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20150287806
    Abstract: A method of making a semiconductor device includes epitaxially growing a channel layer over a substrate. The method further includes depositing an active layer over the channel layer. Additionally, the method includes forming a gate structure over the active layer, the gate structure configured to deplete a 2DEG under the gate structure, the gate structure including a dopant. Furthermore, the method includes forming a barrier layer between the gate structure and the active layer, the barrier layer configured to block diffusion of the dopant from the gate structure into the active layer.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Po-Chun LIU, Chi-Ming CHEN, Chen-Hao CHIANG, Chung-Yi YU, Chia-Shiung TSAI, Xiaomeng CHEN
  • Patent number: 9153717
    Abstract: A method for forming a backside illuminated photo-sensitive device includes forming a gradated sacrificial buffer layer onto a sacrificial substrate, forming a uniform layer onto the gradated sacrificial buffer layer, forming a second gradated buffer layer onto the uniform layer, forming a silicon layer onto the second gradated buffer layer, bonding a device layer to the silicon layer, and removing the gradated sacrificial buffer layer and the sacrificial substrate.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Yen-Chang Chu, Cheng-Ta Wu, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen