Patents by Inventor Xiaoyu Yang

Xiaoyu Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10819211
    Abstract: A method of controlling a secondary-side rectifier switch of a flyback converter, can include: detecting a slope parameter of a secondary-side detection voltage along a predetermined direction, where the secondary-side detection voltage is configured to represent a voltage across a secondary winding of the flyback converter; and controlling the secondary-side rectifier switch to turn on when the slope parameter is greater than a slope parameter threshold, and a relationship between the secondary-side detection voltage and the ON threshold meets a predetermined requirement.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: October 27, 2020
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Xiaoyu Yang, Zhiliang Hu, Yongjiang Bai
  • Publication number: 20200292642
    Abstract: Embodiments relate to cylindrical MRI coils with at least one row as a birdcage row in a transmit mode. One example embodiment is a MRI Radio Frequency (RF) coil array comprising two or more rows of four or more RF coil elements each. Each of the RF coil elements can be configured to resonate at a working frequency of the coil array in a receive mode. At least one of the rows can be configured as a birdcage coil in the transmit mode, and the two or more rows can inductively couple together such that all the two or more rows can resonate together in the transmit mode at the working frequency.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Publication number: 20200292643
    Abstract: Embodiments relate to cylindrical MRI coil arrays with reduced coupling between coil elements. One example embodiment comprises two or more rows, wherein each row comprises at least three RF coil elements of that row enclosing a cylindrical axis; and a ring comprising an associated portion of each RF coil element of a first row and a second row electrically connected together, wherein the associated portion of each RF coil element of the first row and of each RF coil element of the second row comprises an associated capacitor of that RF coil element, and wherein the associated capacitor of that RF coil element is configured to reduce coupling among the RF coil elements of the first row and the RF coil elements of the second row.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 17, 2020
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Publication number: 20200278405
    Abstract: Embodiments relate to MRI coils with a reduced number of baluns. One example embodiment is a MRI coil comprising: a plurality of coil elements in one or more groups of coil elements, wherein each group of coil elements comprises at least two coil elements and a shared trace comprising portions of associated traces of each coil element of that group RF shorted together, and wherein, for each coil element of that group, the shared trace of the group is RF shorted to a shield of an associated coaxial cable for that coil element; and one or more baluns, wherein, for each group of coil elements, at least one balun of the one or more baluns is configured to mitigate leakage current on the coaxial cable of each coil element of that group of coil elements.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 3, 2020
    Inventors: Xiaoyu Yang, Tsinghua Zheng
  • Publication number: 20200262922
    Abstract: The invention relates to stable formulations comprising antibodies or antigen binding fragments thereof that bind to cytotoxic T lymphocyte associated antigen 4 (CTLA4), optionally further containing an anti-human programmed death receptor 1 (PD-1) antibody or antigen binding fragment thereof. Also provided are methods of treating various cancers and chronic infections with the formulations of the invention.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 20, 2020
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Soumendu Bhattacharya, Chakravarthy Nachu Narasimhan, Manoj K. Sharma, Xiaoyu Yang, Arnab De, Rubi Burlage, Jason K. Cheung
  • Patent number: 10739422
    Abstract: Example magnetic resonance imaging (MRI) radio frequency (RF) coils employ flexible coaxial cable. An MRI RF coil may include an LC circuit and an integrated decoupling circuit. The LC circuit includes one or more flexible coaxial cables having a first end and a second end, the one or more flexible coaxial cables having an inner conductor, an outer conductor, and a dielectric spacer disposed between the inner conductor and the outer conductor, where the outer conductor of the coaxial cable is not continuous between the first end and the second end at a first location. The integrated decoupling circuit may include a PIN diode and a tunable element. The tunable element may be tunable with respect to resistance, capacitance, or inductance, and thus may control, at least in part, the frequency at which the LC circuit resonates during RF transmission, or an impedance at the first location.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: August 11, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Yong Wu, Matthew Finnerty
  • Patent number: 10690737
    Abstract: Embodiments relate to magnetic resonance imaging (MRI) radio frequency (RF) coil arrays having reduced coupling via hidden transmission lines. One example embodiment comprises a MRI RF coil array comprising: a first RF coil element coupled to a first output transmission cable (e.g., coaxial) that is configured to carry a first signal that is associated with the first RF coil element; a second RF coil element coupled to a second output transmission cable that is configured to carry a second signal that is associated with the second RF coil element, wherein the second RF coil element comprises a first portion of the first output transmission cable; and a first balun configured to reduce coupling associated with the first signal, wherein the first balun is arranged between the first RF coil element and the second RF coil element. Additional coil elements can be similarly combined in embodiments.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 23, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Publication number: 20200195150
    Abstract: A method of controlling an isolated switching converter having an output voltage that is adjustable, can include: sampling an output voltage of the isolated switching converter; setting an overvoltage protection threshold corresponding to the output voltage of the isolated switching converter when the isolated switching converter enters a protection mode; and triggering the overvoltage protection by comparing an output voltage feedback signal representing the output voltage against the overvoltage protection threshold.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 18, 2020
    Inventors: Xiaoyu Yang, Yongjiang Bai, Qiukai Huang
  • Publication number: 20200191889
    Abstract: Embodiments relate to MRI coils and arrays comprising an all-in-one circuit that can perform all the functions of decoupling, balun, tuning, and preamplifier decoupling. One example embodiment is a magnetic resonance imaging (MRI) radio frequency (RF) coil element, comprising: a coil comprising at least one inductor, at least one capacitor, and two connection points; a lattice balun comprising two inputs and two outputs, wherein the two inputs of the lattice balun are connected across the two connection points of the coil; one or more shunt reactive elements connected across the two outputs of the lattice balun, wherein the one or more shunt reactive elements comprises at least one of one or more shunt capacitors or one or more shunt inductors; one or more protection diodes in parallel with the one or more shunt reactive elements; and a low input impedance preamplifier in parallel with the one or more protection diodes.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Inventor: Xiaoyu Yang
  • Publication number: 20200195139
    Abstract: A method of controlling an isolated switching converter having an output voltage that is adjustable, can include: generating an output voltage setting signal characterizing an expected output voltage of a load; increasing a time period when an output voltage reference signal changes from a current value to the output voltage setting signal; and making overvoltage protection not trigger due to a change of the output setting signal.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 18, 2020
    Inventors: Xiaoyu Yang, Yongjiang Bai, Qiukai Huang
  • Publication number: 20200150200
    Abstract: Embodiments relate to MRI coils and arrays comprising transmission lines to enforce periodic conditions. An example embodiment comprises a MRI RF coil array comprising: a plurality of assemblies, wherein each assembly of the plurality of assemblies comprises: a two-port device of that assembly, wherein the two-port device of that assembly is similar to the two-port device of each other assembly of the plurality of assemblies, and wherein the two-port device of that assembly comprises at least one associated inductor configured to, in a Tx mode, generate at least a portion of a B1 field; and a transmission line of that assembly, wherein a length of the transmission line of that assembly can be similar to a length of the transmission line of each other assembly of the plurality of assemblies, wherein the plurality of assemblies are connected together in a loop.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 14, 2020
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Patent number: 10649048
    Abstract: A single-layer magnetic resonance imaging (MRI) radio frequency (RF) coil array configured to operate in a transmit (Tx) mode or in a receive (Rx) mode comprises at least one single-layer MRI RF coil array element configured to provide integrated B0 field shimming. The at least one single-layer MRI RF coil array element includes a resonant LC coil, a matching Tx/Rx switch circuit, a magnitude/phase control component, and a preamplifier. The LC coil, upon resonating with a primary coil at the working frequency, generates a local amplified Tx field based on an induced current in the LC coil. The magnitude/phase control component is configured to independently adjust a magnitude or a phase of the induced current. The at least one single-layer MRI RF coil element may include a Tx field monitoring component configured to monitor the strength or phase of the local amplified Tx field.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 12, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Haoqin Zhu, Tsinghua Zheng, Labros Petropoulos
  • Publication number: 20200096584
    Abstract: Embodiments relate to MRI RF multi-tune coil elements, arrays, and MRI systems comprising such elements. One example embodiment comprises: a LC coil comprising one or more matching points; and two or more matching branches, each of which connected to the LC coil at matching point of the one or more matching points that is associated with that matching branch, wherein each matching branch comprises an associated set of one or more RF traps configured to block each frequency of two or more frequencies other than a frequency associated with that matching branch, and wherein each matching branch is configured to match to an associated predetermined impedance at the frequency associated with that matching branch.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 26, 2020
    Inventors: Xiaoyu Yang, Tsinghua Zheng, Haoqin Zhu
  • Patent number: 10591560
    Abstract: Example embodiments include a radio frequency (RF) transmit system for a digital RF current source, the system including a magnetic resonance imaging (MRI) system control console operably connected to at least one digital RF current source amplifier. The at least one digital RF current source amplifier is operably connected to an RF transmission coil. The MRI system control console provides a digital control signal to the at least one digital RF current source amplifier. The MRI system control console provides a master RF current source clock signal to the at least one digital RF current source amplifier. The digital RF current source amplifier provides an alternating current to the RF transmission coil.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 17, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventor: Xiaoyu Yang
  • Publication number: 20200081081
    Abstract: Embodiments relate to integrated MRI (Magnetic Resonance Imaging) coil arrays that can be stored within a patient table when not in use. One example embodiment comprises a coil array comprising: at least one flat spine-like coil array arranged within a patient table of a MRI system; and flexible coil array(s) configured to be in a stored position within the patient table, wherein, in the stored position, the flexible coil array(s) are one of within or under the at least one flat spine-like rigid coil array, wherein the flexible coil array(s) are further configured to be in an extended position, wherein, in the extended position, the flexible coil array(s) is configured to be extracted from the patient table and to wrap around at least one anatomical region of a patient on the patient table to facilitate MRI of the at least one anatomical region.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 12, 2020
    Inventors: Xiaoyu Yang, Haoqin Zhu, Tsinghua Zheng
  • Patent number: 10542890
    Abstract: An example magnetic resonance imaging (MRI) coil base apparatus for use with interchangeable attachable and detachable coil attachments is described. The coil base apparatus electrically and mechanically couples to different MRI coil attachments designed for imaging different body parts (e.g., ankles, knees, wrists, elbows, shoulders). The MRI coil base apparatus includes elements (e.g., channel, pre-amplifier, mixer, feed circuit, decoupling circuit) for controlling the coil attachment to transmit radio frequency (RF) energy that produces nuclear magnetic resonance (NMR) in an object exposed to the RF energy. The coil attachment includes elements that transmit the RF energy and a copper trace that receives resulting NMR signals. The coil base apparatus may include a slide apparatus for repositioning the coil attachment in one axis when the coil attachment is coupled to the coil base apparatus or a pivot apparatus for rotating the coil attachment when it is coupled to the coil base apparatus.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 28, 2020
    Assignee: Quality Electrodynamics, LLC
    Inventors: Xiaoyu Yang, Tsinghua Zheng
  • Patent number: 10509571
    Abstract: A storage device includes a flash memory array and a controller. The flash memory array includes a plurality of blocks. The first block among the blocks has a minimal erase count in the blocks. When determining that a difference between an average erase count of the blocks and the minimal erase count exceeds a cold-data threshold, the controller selects the first block to be a source block. When a data migration of a data-moving process is executed, the controller moves the data of the source block to a target block.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: December 17, 2019
    Assignee: VIA TECHNOLOGIES, INC.
    Inventors: Zhongyi Gao, Xiaoyu Yang
  • Patent number: 10496450
    Abstract: Apparatuses, systems, methods, and computer program products are disclosed for selective temperature compensation. An apparatus includes a compensation circuit that applies temperature compensation to an operation based on a temperature detected by a temperature sensor. An apparatus includes a command circuit that receives a lock command. An apparatus includes a lock circuit that locks a temperature compensation applied to an operation in response to receiving a lock command such that the temperature compensation is based on a fixed temperature.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: December 3, 2019
    Assignee: SanDisk Technologies LLC
    Inventors: Ming Zhang, Feng Gao, Qing Li, Xiaoyu Yang
  • Publication number: 20190331744
    Abstract: Embodiments relate to birdcage coils with in-plane open RF shielding capable of operating at 7T and higher field strength. One example embodiment comprises a first birdcage circuit and second birdcage circuit, each comprising two rings, N rungs that electrically connect the two rings of that circuit, a plurality of capacitors in the first birdcage circuit to form a first birdcage coil, and an optional plurality of capacitors in the second birdcage circuit to form a second birdcage coil when included or a non-resonant RF shield when omitted, wherein the first birdcage circuit is electrically isolated from the second birdcage circuit, wherein the first birdcage circuit and the second birdcage circuit have a common cylindrical axis, and wherein the N rungs of the second birdcage circuit are azimuthally rotated through a first angle relative to the N rungs of the first birdcage circuit.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 31, 2019
    Inventors: Xiaoyu Yang, Chris Allen, Tsinghua Zheng, Haoqin Zhu
  • Publication number: 20190310330
    Abstract: Embodiments relate to multi-turn coil elements and arrays of multi-turn coil elements that can be employed at low B0 field strength (e.g., 1.5 T or less). One example embodiment comprises a coil array configured to operate in at least one of a transmit (Tx) mode or a receive (Rx) mode, the coil array comprising: a plurality of multi-turn coil elements, each multi-turn coil element of the plurality of multi-turn coil elements comprising: an associated LC coil of that multi-turn coil element, comprising at least one associated coil inductor, at least one associated coil capacitor, and an associated loop comprising at least two turns; wherein the plurality of multi-turn coil elements are arranged into one or more rows, wherein the plurality of multi-turn coil elements are arranged into one or more columns, and wherein the MRI RF coil array is configured to operate at a B0 field of 1.5 T or less.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 10, 2019
    Inventors: Xiaoyu Yang, Haoqin Zhu, Yong Wu, Tsinghua Zheng