Patents by Inventor Xuedong Liu

Xuedong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12278081
    Abstract: A multi-beam inspection apparatus including an adjustable beam separator is disclosed. The adjustable beam separator is configured to change a path of a secondary particle beam. The adjustable beam separator comprises a first Wien filter and a second Wien filter. Both Wien filters are aligned with a primary optical axis. The first Wien filter and the second Wien filter are independently controllable via a first excitation input and a second excitation input, respectively. The adjustable beam separator is configured move the effective bending point of the adjustable beam separator along the primary optical axis based on the first excitation input and the second excitation input.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: April 15, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Qingpo Xi, Xuerang Hu, Xuedong Liu, Weiming Ren, Zhong-Wei Chen
  • Publication number: 20250112023
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Application
    Filed: September 9, 2024
    Publication date: April 3, 2025
    Inventors: Weiming REN, Shuai LI, Xuedong LIU, Zhongwei CHEN
  • Patent number: 12243709
    Abstract: The present disclosure proposes an anti-rotation lens and using it as an anti-rotation condenser lens in a multi-beam apparatus with a pre-beamlet-forming mechanism. The anti-rotation condenser lens keeps rotation angles of beamlets unchanged when changing currents thereof, and thereby enabling the pre-beamlet-forming mechanism to cut off electrons not in use as much as possible. In this way, the multi-beam apparatus can observe a sample with high resolution and high throughput, and is competent as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: March 4, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhong-Wei Chen
  • Patent number: 12237144
    Abstract: Disclosed herein is an apparatus comprising: a first electrically conductive layer, a second electrically conductive layer; a plurality of optics element s between the first electrically conductive layer and the second electrically conductive layer, wherein the plurality of optics elements are configured to influence a plurality of beams of charged particles; a third electrically conductive layer between the first electrically conductive layer and the second electrically conductive layer; and an electrically insulating layer physically connected to the optics elements, wherein the eclectically insulating layer is configured to electrically insulate the optics elements from the first electrically conductive layer, and the second electrically conductive layer.
    Type: Grant
    Filed: September 28, 2023
    Date of Patent: February 25, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Xuerang Hu, Weiming Ren, Xuedong Liu, Zhong-wei Chen
  • Patent number: 12237143
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Grant
    Filed: December 21, 2023
    Date of Patent: February 25, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20250037967
    Abstract: Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may include a compound objective lens comprising a magnetic lens and an electrostatic lens, the magnetic lens comprising a cavity, and an electron detector located immediately upstream from a polepiece of the magnetic lens and inside the cavity of the magnetic lens. In some embodiments, deflectors may be located between the electron detector and the opening of the polepiece adjacent to the sample to achieve a large field of view. Electron distributions among the detectors can be manipulated without changing the landing energy by changing the potential of the control electrode(s) in the electrostatic objective lens. The electron source can be operated with several discrete potentials to cover different landing energies, while the potential difference between electron source and the extractor is fixed.
    Type: Application
    Filed: October 10, 2024
    Publication date: January 30, 2025
    Inventors: Xuedong LIU, Weimin ZHOU, Xiaoxue CHEN, Xiaoyu JI, Heng LI, Shahedul HOQUE, Zongyao LI, Shuhao LIU, Weiming REN
  • Patent number: 12211669
    Abstract: Systems and methods of forming images of a sample using a multi-beam apparatus are disclosed. The method may include generating a plurality of secondary electron beams from a plurality of probe spots on the sample upon interaction with a plurality of primary electron beams. The method may further include adjusting an orientation of the plurality of primary electron beams interacting with the sample, directing the plurality of secondary electron beams away from the plurality of primary electron beams, compensating astigmatism aberrations of the plurality of directed secondary electron beams, focusing the plurality of directed secondary electron beams onto a focus plane, detecting the plurality of focused secondary electron beams by a charged-particle detector, and positioning a detection plane of the charged-particle detector at or close to the focus plane.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 28, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Zizhou Gong, Xuerang Hu, Xuedong Liu, Zhong-wei Chen
  • Publication number: 20250027990
    Abstract: Systems and methods of inspecting a sample using a charged-particle beam apparatus with enhanced probe current and high current density of the primary charged-particle beam are disclosed. The apparatus includes a charged-particle source, a first condenser lens configured to condense the primary charged-particle beam and operable in a first mode and a second mode, wherein: in the first mode, the first condenser lens is configured to condense the primary charged-particle beam, and in the second mode, the first condenser lens is configured to condense the primary charged-particle beam sufficiently to form a crossover along the primary optical axis. The apparatus further includes a second condenser lens configured to adjust a first beam current of the primary charged-particle beam in the first mode and adjust a second beam current of the primary charged-particle beam in the second mode, the second beam current being larger than the first beam current.
    Type: Application
    Filed: October 26, 2022
    Publication date: January 23, 2025
    Applicant: ASML Netherlands B.V.
    Inventors: Datong ZHANG, Xiaoyu JI, Weiming REN, Xuedong LIU, Chia Wen LIN
  • Patent number: 12196692
    Abstract: Systems and methods of providing a probe spot in multiple modes of operation of a charged-particle beam apparatus are disclosed. The method may comprise activating a charged-particle source to generate a primary charged-particle beam and selecting between a first mode and a second mode of operation of the charged-particle beam apparatus. In the flooding mode, the condenser lens may focus at least a first portion of the primary charged-particle beam passing through an aperture of the aperture plate to form a second portion of the primary charged-particle beam, and substantially all of the second portion is used to flood a surface of a sample. In the inspection mode, the condenser lens may focus a first portion of the primary charged-particle beam such that the aperture of the aperture plate blocks off peripheral charged-particles to form the second portion of the primary charged-particle beam used to inspect the sample surface.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 14, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Zhong-wei Chen, Xiaoyu Ji, Xiaoxue Chen, Weimin Zhou, Frank Nan Zhang
  • Patent number: 12191109
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: January 7, 2025
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Qingpo Xi, Youfei Jiang, Weiming Ren, Xuerang Hu, Zhongwei Chen
  • Publication number: 20240409944
    Abstract: The invention describes novel systems and methods for cell-to-cell HGT. In one preferred embodiment, a donor cell and a recipient cell are co-cultured, or otherwise brought into contact such that the donor cell and the recipient cell form a cell-to-cell contact to facilitate HGT. In this aspect of the invention, the donor cell is entrapped by the recipient cell forming an intercellular mosaic structure that facilitates the transfer of genetic material from the donor to recipient cell. The invention further described novel systems and methods for blocking cell entrapment and HGT. Such novel systems and methods for blocking cell entrapment and HGT may be used as a treatment for cancer, and in particular may be directed to the prevention of metastasis of cancerous tumors.
    Type: Application
    Filed: May 16, 2024
    Publication date: December 12, 2024
    Inventors: Xuedong Liu, Quanbin Xu, Xiaojuan Zhang, Ashley Jung, Erica Sung
  • Patent number: 12165837
    Abstract: An improved system and method for inspection of a sample using a particle beam inspection apparatus, and more particularly, to systems and methods of scanning a sample with a plurality of charged particle beams. An improved method of scanning an area of a sample using N charged particle beams, wherein N is an integer greater than or equal to two, and wherein the area of the sample comprises a plurality of scan sections of N consecutive scan lines, includes moving the sample in a first direction. The method also includes scanning, with a first charged particle beam of the N charged particle beams, first scan lines of at least some scan sections of the plurality of scan sections moving towards a probe spot of the first charged particle beam. The method further includes scanning, with a second charged particle beam of the N charged particle beams, second scan lines of at least some scan sections of the plurality of scan sections moving towards a probe spot of the second charged particle beam.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: December 10, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Martinus Gerardus Maria Johannes Maassen, Joost Jeroen Ottens, Long Ma, Youfei Jiang, Weihua Yin, Wei-Te Li, Xuedong Liu
  • Publication number: 20240393444
    Abstract: Embodiments of the disclosure provide an ultrasound beamforming method and device. The method includes: obtaining channel data of a target tissue; and processing the channel data using at least two different ultrasound beamforming methods to obtain image data of the target tissue corresponding to the different ultrasound beamforming methods, where the at least two different ultrasound beamforming methods are different in at least one of principle, step, and parameter.
    Type: Application
    Filed: August 6, 2024
    Publication date: November 28, 2024
    Inventors: Chongchong GUO, Jing Liu, Bo Yang, Lei Li, Xuedong Liu, Muqing Lin, Qiang Liu
  • Patent number: 12142453
    Abstract: A multi-beam inspection apparatus including an improved source conversion unit is disclosed. The improved source conversion unit may comprise a micro-structure deflector array including a plurality of multipole structures. The micro-deflector deflector array may comprise a first multipole structure having a first radial shift from a central axis of the array and a second multipole structure having a second radial shift from the central axis of the array. The first radial shift is larger than the second radial shift, and the first multipole structure comprises a greater number of pole electrodes than the second multipole structure to reduce deflection aberrations when the plurality of multipole structures deflects a plurality of charged particle beams.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: November 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Qian Zhang, Xuerang Hu, Xuedong Liu
  • Patent number: 12142455
    Abstract: Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may include a compound objective lens comprising a magnetic lens and an electrostatic lens, the magnetic lens comprising a cavity, and an electron detector located immediately upstream from a polepiece of the magnetic lens and inside the cavity of the magnetic lens. In some embodiments, deflectors may be located between the electron detector and the opening of the polepiece adjacent to the sample to achieve a large field of view. Electron distributions among the detectors can be manipulated without changing the landing energy by changing the potential of the control electrode(s) in the electrostatic objective lens. The electron source can be operated with several discrete potentials to cover different landing energies, while the potential difference between electron source and the extractor is fixed.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: November 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weimin Zhou, Xiaoxue Chen, Xiaoyu Ji, Heng Li, Shahedul Hoque, Zongyao Li, Shuhao Liu, Weiming Ren
  • Publication number: 20240347313
    Abstract: Systems and methods of removing a contaminant from an emitter tip of an electron source in an electron beam apparatus are disclosed. An electron beam apparatus may include an electron source comprising an emitter tip configured to emit electrons and an optical source configured to generate an optical beam illuminating a portion of the emitter tip to excite a surface mode of the optical beam, wherein the excited surface mode facilitates removal of a contaminant from a surface of the illuminated portion of the emitter tip. The excited surface mode may comprise a propagating surface wave or a localized surface wave. The emitter tip may comprise a grating structure, wherein a characteristic of the grating structure matches a wavevector of the optical beam.
    Type: Application
    Filed: June 21, 2024
    Publication date: October 17, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Zhidong DU, Xuedong LIU
  • Patent number: 12085679
    Abstract: Embodiments of the disclosure provide an ultrasound beamforming method and device. The method includes: obtaining channel data of a target tissue; and processing the channel data using at least two different ultrasound beamforming methods to obtain image data of the target tissue corresponding to the different ultrasound beamforming methods, where the at least two different ultrasound beamforming methods are different in at least one of principle, step, and parameter.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: September 10, 2024
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Chongchong Guo, Jing Liu, Bo Yang, Lei Li, Xuedong Liu, Muqing Lin, Qiang Liu
  • Patent number: 12087541
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: September 10, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Shuai Li, Xuedong Liu, Zhongwei Chen
  • Patent number: 12080515
    Abstract: Systems and methods for observing a sample in a multi-beam apparatus are disclosed. A charged particle optical system may include a deflector configured to form a virtual image of a charged particle source and a transfer lens configured to form a real image of the charged particle source on an image plane. The image plane may be formed at least near a beam separator that is configured to separate primary charged particles generated by the source and secondary charged particles generated by interaction of the primary charged particles with a sample. The image plane may be formed at a deflection plane of the beam separator. The multi-beam apparatus may include a charged-particle dispersion compensator to compensate dispersion of the beam separator. The image plane may be formed closer to the transfer lens than the beam separator, between the transfer lens and the charged-particle dispersion compensator.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: September 3, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zong-wei Chen
  • Patent number: 12033830
    Abstract: Systems and methods of enhancing imaging resolution by reducing crosstalk between detection elements of a secondary charged-particle detector in a multi-beam apparatus are disclosed. The multi-beam apparatus may comprise an electro-optical system for projecting a plurality of secondary charged-particle beams from a sample onto a charged-particle detector. The electro-optical system may include a first pre-limit aperture plate comprising a first aperture configured to block peripheral charged-particles of the plurality of secondary charged-particle beams, and a beam-limit aperture array comprising a second aperture configured to trim the plurality of secondary charged-particle beams. The charged-particle detector may include a plurality of detection elements, wherein a detection element of the plurality of detection elements is associated with a corresponding trimmed beam of the plurality of secondary charged-particle beams.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: July 9, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuerang Hu, Qingpo Xi, Xuedong Liu