Patents by Inventor Xuedong Liu

Xuedong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200381212
    Abstract: Systems and methods of reducing the Coulomb interaction effects in a charged particle beam apparatus are disclosed. The charged particle beam apparatus may comprise a charged particle source and a source conversion unit comprising an aperture-lens forming electrode plate configured to be at a first voltage, an aperture lens plate configured to be at a second voltage that is different from the first voltage for generating a first electric field, which enables the aperture-lens forming electrode plate and the aperture lens plate to form aperture lenses of an aperture lens array to respectively focus a plurality of beamlets of the charged particle beam, and an imaging lens configured to focus the plurality of beamlets on an image plane. The charged particle beam apparatus may comprise an objective lens configured to focus the plurality of beamlets onto a surface of the sample and form a plurality of probe spots thereon.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200381211
    Abstract: Systems and methods of mitigating Coulomb effect in a multi-beam apparatus are disclosed. The multi-beam apparatus may include a charged-particle source configured to generate a primary charged-particle beam along a primary optical axis, a first aperture array comprising a first plurality of apertures having shapes and configured to generate a plurality of primary beamlets derived from the primary charged-particle beam, a condenser lens comprising a plane adjustable along the primary optical axis, and a second aperture array comprising a second plurality of apertures configured to generate probing beamlets corresponding to the plurality of beamlets, wherein each of the plurality of probing beamlets comprises a portion of charged particles of a corresponding primary beamlet based on at least a position of the plane of the condenser lens and a characteristic of the second aperture array.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN, Martinus Gerardus Johannes Maria MAASSEN
  • Publication number: 20200381207
    Abstract: Systems and methods of enhancing imaging resolution by reducing crosstalk between detection elements of a secondary charged-particle detector in a multi-beam apparatus are disclosed. The multi-beam apparatus may comprise an electro-optical system for projecting a plurality of secondary charged-particle beams from a sample onto a charged-particle detector. The electro-optical system may include a first pre-limit aperture plate comprising a first aperture configured to block peripheral charged-particles of the plurality of secondary charged-particle beams, and a beam-limit aperture array comprising a second aperture configured to trim the plurality of secondary charged-particle beams. The charged-particle detector may include a plurality of detection elements, wherein a detection element of the plurality of detection elements is associated with a corresponding trimmed beam of the plurality of secondary charged-particle beams.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuerang HU, Qingpo XI, Xuedong LIU
  • Patent number: 10811222
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 20, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200321191
    Abstract: A multi-beam inspection apparatus supporting a plurality of operation modes is disclosed. The charged particle beam apparatus for inspecting a sample supporting a plurality of operation modes comprises a charged particle beam source configured to emit a charged particle beam along a primary optical axis, a movable aperture plate, movable between a first position and a second position, and a controller having circuitry and configured to change the configuration of the apparatus to switch between a first mode and a second mode. In the first mode, the movable aperture plate is positioned in the first position and is configured to allow a first charged particle beamlet derived from the charged particle beam to pass through. In the second mode, the movable aperture plate is positioned in the second position and is configured to allow the first charged particle beamlet and a second charged particle beamlet to pass through.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 8, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200303155
    Abstract: A multi-beam apparatus for multi-beam inspection with an improved source conversion unit providing more beamlets with high electric safety, mechanical availability and mechanical stabilization has been disclosed. The source-conversion unit comprises an image-forming element array having a plurality of image-forming elements, an aberration compensator array having a plurality of micro-compensators, and a pre-bending element array with a plurality of pre-bending micro-deflectors. In each of the arrays, adjacent elements are placed in different layers, and one element may comprise two or more sub-elements placed in different layers. The sub-elements of a micro-compensator may have different functions such as micro-lens and micro-stigmators.
    Type: Application
    Filed: October 2, 2018
    Publication date: September 24, 2020
    Inventors: Xuerang HU, Xuedong LIU, Weiming REN, Zhong-wei CHEN
  • Publication number: 20200286705
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Application
    Filed: February 24, 2020
    Publication date: September 10, 2020
    Inventors: Xuedong LIU, Weiming REN, Shuai LI, Zhongwei CHEN
  • Publication number: 20200266023
    Abstract: Disclosed herein is an apparatus comprising: a source of charged particles configured to emit a beam of charged particles along a primary beam axis of the apparatus; a condenser lens configured to cause the beam to concentrate around the primary beam axis; an aperture; a first multi-pole lens; a second multi-pole lens; wherein the first multi-pole lens is downstream with respect to the condenser lens and upstream with respect to the second multi-pole lens; wherein the second multi-pole lens is downstream with respect to the first multi-pole lens and upstream with respect to the aperture.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 20, 2020
    Inventors: Xuedong LIU, Qingpo XI, Youfei JIANG, Weiming REN, Xuerang HU, Zhongwei CHEN
  • Publication number: 20200234912
    Abstract: Apparatus and methods for adjusting beam condition of charged particles are disclosed. According to certain embodiments, the apparatus includes one or more first multipole lenses displaced above an aperture, the one or more first multipole lenses being configured to adjust a beam current of a charged-particle beam passing through the aperture. The apparatus also includes one or more second multipole lenses displaced below the aperture, the one or more second multipole lenses being configured to adjust at least one of a spot size and a spot shape of the beam.
    Type: Application
    Filed: September 25, 2018
    Publication date: July 23, 2020
    Inventor: Xuedong LIU
  • Publication number: 20200227233
    Abstract: Disclosed herein is a method comprising: generating a plurality of probe spots on a sample by a plurality of beams of charged particles; while scanning the plurality of probe spots across a region on the sample, recording from the plurality of probe spots a plurality of sets of signals respectively representing interactions of the plurality of beams of charged particles and the sample; generating a plurality of images of the region respectively from the plurality of sets of signals; and generating a composite image of the region from the plurality of images.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Kuo-Shih LIU, Xuedong LIU, Wei FANG, Jack JAU
  • Publication number: 20200211811
    Abstract: A multi-beam inspection apparatus including an improved source conversion unit is disclosed. The improved source conversion unit may comprise a micro-structure deflector array including a plurality of multipole structures. The micro-deflector deflector array may comprise a first multipole structure having a first radial shift from a central axis of the array and a second multipole structure having a second radial shift from the central axis of the array. The first radial shift is larger than the second radial shift, and the first multipole structure comprises a greater number of pole electrodes than the second multipole structure to reduce deflection aberrations when the plurality of multipole structures deflects a plurality of charged particle beams.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 2, 2020
    Inventors: Weiming REN, Qian ZHANG, Xuerang HU, Xuedong LIU
  • Publication number: 20200203114
    Abstract: Disclosed herein is an apparatus comprising: a first electrically conductive layer; a second electrically conductive layer; a plurality of optics element s between the first electrically conductive layer and the second electrically conductive layer, wherein the plurality of optics elements are configured to influence a plurality of beams of charged particles; a third electrically conductive layer between the first electrically conductive layer and the second electrically conductive layer; and an electrically insulating layer physically connected to the optics elements, wherein the electrically insulating layer is configured to electrically insulate the optics elements from the first electrically conductive layer, and the second electrically conductive layer.
    Type: Application
    Filed: April 4, 2018
    Publication date: June 25, 2020
    Inventors: Xuerang HU, Weiming REN, Xuedong LIU, Zhong-wei CHEN
  • Publication number: 20200161079
    Abstract: An electromagnetic compound lens may be configured to focus a charged particle beam. The compound lens may include an electrostatic lens provided on a secondary optical axis and a magnetic lens also provided on the secondary optical axis. The magnetic lens may include a permanent magnet. A charged particle optical system may include a beam separator configured to separate a plurality of beamlets of a primary charged particle beam generated by a source along a primary optical axis from secondary beams of secondary charged particles. The system may include a secondary imaging system configured to focus the secondary beams onto a detector along the secondary optical axis. The secondary imaging system may include the compound lens.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 21, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200152421
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 14, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200152412
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Application
    Filed: August 26, 2019
    Publication date: May 14, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Patent number: 10643820
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: May 5, 2020
    Assignee: HERMES MICROVISION INC.
    Inventors: Weiming Ren, Shuai Li, Xuedong Liu, Zhongwei Chen
  • Publication number: 20200124546
    Abstract: An improved charged particle beam inspection apparatus, and more particularly, a particle beam inspection apparatus including an improved alignment mechanism is disclosed. An improved charged particle beam inspection apparatus may include a second electron detection device to generate one or more images of one or more beam spots of the plurality of secondary electron beams during the alignment mode. The beam spot image may be used to determine the alignment characteristics of one or more of the plurality of secondary electron beams and adjust a configuration of a secondary electron projection system.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: Xuerang HU, Xinan Luo, Qingpo Xi, Xuedong Liu, Weiming Ren
  • Patent number: 10624604
    Abstract: This disclosure relates to medical diagnostic high-frequency X-ray machines and power supply devices thereof. One power supply device can convert an alternating current into a direct current, which is further raised by a boost circuit and stored by a capacitor module, so that the power supply device can provide high voltage and sufficient power to an inverter. Another power supply device can use a lithium iron phosphate battery to power the X-ray machine. Accordingly, the X-ray machine can be lighter, smaller, resistant to high temperature, fast in electrical charging and discharging, and safer, and the usage life of the X-ray machine can be prolonged due to the long cycle life of the lithium iron phosphate battery.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Wan Zhang, Xuedong Liu
  • Patent number: 10573487
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 25, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen
  • Publication number: 20200051779
    Abstract: Systems and methods for observing a sample in a multi-beam apparatus are disclosed. A charged particle optical system may include a deflector configured to form a virtual image of a charged particle source and a transfer lens configured to form a real image of the charged particle source on an image plane. The image plane may be formed at least near a beam separator that is configured to separate primary charged particles generated by the source and secondary charged particles generated by interaction of the primary charged particles with a sample. The image plane may be formed at a deflection plane of the beam separator. The multi-beam apparatus may include a charged-particle dispersion compensator to compensate dispersion of the beam separator. The image plane may be formed closer to the transfer lens than the beam separator, between the transfer lens and the charged-particle dispersion compensator.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 13, 2020
    Inventors: Weiming REN, Xuedong Liu, Xuerang Hu, Zong-wei Chen