Patents by Inventor Yasushi Ishii

Yasushi Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130334592
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Tsutomu OKAZAKI, Daisuke OKADA, Kyoya NITTA, Toshihiro TANAKA, Akira KATO, Toshikazu MATSUI, Yasushi ISHII, Digh HISAMOTO, Kan YASUI
  • Patent number: 8576634
    Abstract: The degree of integration and the number of rewriting of a semiconductor device having a nonvolatile memory element are improved. A first MONOS nonvolatile-memory-element and a second MONOS nonvolatile-memory-element having a large gate width compared with the first MONOS nonvolatile-memory-element are mounted together on the same substrate, and the first MONOS nonvolatile-memory-element is used for storing program data which is scarcely rewritten, and the second MONOS nonvolatile-memory-element is used for storing processed data which is frequently rewritten.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: November 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Fumitoshi Ito, Yoshiyuki Kawashima, Takeshi Sakai, Yasushi Ishii, Yasuhiro Kanamaru, Takashi Hashimoto, Makoto Mizuno, Kousuke Okuyama, Yukiko Manabe
  • Publication number: 20130285057
    Abstract: Increase in the chip size of a semiconductor device is suppressed. The semiconductor device includes: circuit vias provided in an interlayer insulating film between upper and lower wiring layers and coupling these wiring layers together; a planar ring-shaped protecting via that is provided in the interlayer insulating film under an electrode pad and one side of which is coupled with the electrode pad; a protecting wiring layer comprised of a wiring layer coupled only with the other side of the protecting via; and a semiconductor element provided over the principal surface of a semiconductor substrate under the protecting wiring layer. The lower part of the electrode pad whose surface is exposed is encircled with the protecting via and the protecting wiring layer. The width of the protecting via is equal to or larger than the width of each circuit via.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 31, 2013
    Inventor: Yasushi ISHII
  • Publication number: 20130234289
    Abstract: In connection with a semiconductor device including a capacitor element there is provided a technique capable of improving the reliability of the capacitor element. A capacitor element is formed in an element isolation region formed over a semiconductor substrate. The capacitor element includes a lower electrode and an upper electrode formed over the lower electrode through a capacitor insulating film. Basically, the lower electrode and the upper electrode are formed from polysilicon films and a cobalt silicide film formed over the surfaces of the polysilicon films. End portions of the cobalt silicide film formed over the upper electrode are spaced apart a distance from end portions of the upper electrode. Besides, end portions of the cobalt silicide film formed over the lower electrode are spaced apart a distance from boundaries between the upper electrode and the lower electrode.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Yoshiyuki KAWASHIMA, Koichi TOBA, Yasushi ISHII, Toshikazu MATSUI, Takashi HASHIMOTO
  • Patent number: 8530958
    Abstract: A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Toba, Yasushi Ishii, Yoshiyuki Kawashima, Satoru Machida, Munekatsu Nakagawa, Kentaro Saito, Toshikazu Matsui, Takashi Hashimoto, Kosuke Okuyama
  • Patent number: 8507340
    Abstract: A lamination pattern having a control gate electrode, a first insulation film thereover, and a second insulation film thereover is formed over a semiconductor substrate. A memory gate electrode is formed adjacent to the lamination pattern. A gate insulation film is formed between the control gate and the semiconductor substrate. A fourth insulation film, including a lamination film of a silicon oxide film, a silicon nitride film, and another silicon oxide film, is formed between the memory gate electrode and the semiconductor substrate and between the lamination pattern and the memory gate electrode. At the sidewall on the side of the lamination pattern adjacent to the memory gate electrode, the first insulation film is retreated from the control gate electrode and the second insulation film, and the upper end corner portion of the control gate electrode is rounded.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: August 13, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiraku Chakihara, Yasushi Ishii
  • Patent number: 8497547
    Abstract: Provided is a semiconductor device having, over a semiconductor substrate, a control gate electrode and a memory gate electrode which are adjacent to each other and constitute a nonvolatile memory. The height of the memory gate electrode is lower than the height of the control gate electrode. A metal silicide film is formed over the upper surface of the control gate electrode, but not formed over the upper surface of the memory gate electrode. The memory gate electrode has, over the upper surface thereof, a sidewall insulating film made of silicon oxide. This sidewall insulating film is formed in the same step as that for the formation of respective sidewall insulating films over the sidewalls of the memory gate electrode and the control gate electrode. The present invention makes it possible to improve the production yield and performance of the semiconductor device having a nonvolatile memory.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 30, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Toba, Yasushi Ishii, Yoshiyuki Kawashima, Satoru Machida, Munekatsu Nakagawa, Takashi Hashimoto
  • Patent number: 8461642
    Abstract: The present invention can realize a highly-integrated semiconductor device having a MONOS type nonvolatile memory cell equipped with a split gate structure without deteriorating the reliability of the device. A memory gate electrode of a memory nMIS has a height greater by from 20 to 100 nm than that of a select gate electrode of a select nMIS so that the width of a sidewall formed over one (side surface on the side of a source region) of the side surfaces of the memory gate electrode is adjusted to a width necessary for achieving desired disturb characteristics. In addition, a gate electrode of a peripheral second nMIS has a height not greater than the height of a select gate electrode of a select nMIS to reduce the width of a sidewall formed over the side surface of the gate electrode of the peripheral second nMIS so that a shared contact hole is prevented from being filled with the sidewall.
    Type: Grant
    Filed: August 2, 2009
    Date of Patent: June 11, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takuro Homma, Yasushi Ishii, Kota Funayama
  • Patent number: 8456126
    Abstract: There is provided a motor control system and motor control method which can shorten settling time by restraining vibration and deviation relative to an advancing direction during operation. Moreover, according to the present invention, it is possible to cause a motor to be operated with an ideal track and, since it is possible to always monitor a present position, it is made easy to cause a plurality of axes to be synchronously operated. The motor control system is provided with a unit generating command waveforms from a jerk data which has significant effects on the vibration relative to the advancing direction, and a unit performing a real time real position control of regenerating future command waveforms according to a deviation amount, while always performing jerk-limit, whereby the vibration and the deviation relative to the advancing direction when the motor operates at high speed are restrained.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Hitachi High-Tech Instruments Co., Ltd.
    Inventors: Mitsuaki Tate, Yasushi Ishii, Masamichi Kihara
  • Patent number: 8431978
    Abstract: In connection with a semiconductor device including a capacitor element there is provided a technique capable of improving the reliability of the capacitor element. A capacitor element is formed in an element isolation region formed over a semiconductor substrate. The capacitor element includes a lower electrode and an upper electrode formed over the lower electrode through a capacitor insulating film. Basically, the lower electrode and the upper electrode are formed from polysilicon films and a cobalt silicide film formed over the surfaces of the polysilicon films. End portions of the cobalt silicide film formed over the upper electrode are spaced apart a distance from end portions of the upper electrode. Besides, end portions of the cobalt silicide film formed over the lower electrode are spaced apart a distance from boundaries between the upper electrode and the lower electrode.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 30, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Kawashima, Koichi Toba, Yasushi Ishii, Toshikazu Matsui, Takashi Hashimoto
  • Publication number: 20130084684
    Abstract: The present invention improves the production yield of a semiconductor device having nonvolatile memory cells of a split gate structure. The level difference of a lower layer resist film with which an end of a memory mat is covered is gentled, the uniformity of the thickness of a resist intermediate layer formed over the lower layer resist film is improved, and local thickness reduction or disappearance is prevented by, after forming a silicon oxide film and a silicon nitride film over each of selective gate electrodes formed in a memory cell region of a semiconductor substrate, removing the silicon oxide film and the silicon nitride film over the selective gate electrode located on the outermost side (a dummy cell region) of the memory mat in the gate length direction.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 4, 2013
    Inventors: Yasushi ISHII, Hiraku CHAKIHARA, Takahiro MARUYAMA, Akihiro NAKAE
  • Patent number: 8395203
    Abstract: Over the top of a semiconductor substrate, a lamination pattern having a control gate electrode, a first insulation film thereover, and a second insulation film thereover is formed. Over the top of the semiconductor substrate, a memory gate electrode adjacent to the lamination pattern is formed. Between the control gate electrode and the semiconductor substrate, a third insulation film for gate insulation film is formed. Between the memory gate electrode and the semiconductor substrate, and between the lamination pattern and the memory gate electrode, a fourth insulation film including a lamination film of a silicon oxide film, a silicon nitride film, and another silicon oxide film is formed. At the sidewall on the side of the lamination pattern adjacent to the memory gate electrode, the first insulation film is retreated from the control gate electrode and the second insulation film, and the upper end corner portion of the control gate electrode is rounded.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: March 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiraku Chakihara, Yasushi Ishii
  • Patent number: 8390048
    Abstract: For enhancing the high performance of a non-volatile semiconductor memory device having an MONOS type transistor, a non-volatile semiconductor memory device is provided with MONOS type transistors having improved performance in which the memory cell of an MONOS non-volatile memory comprises a control transistor and a memory transistor. A control gate of the control transistor comprises an n-type polycrystal silicon film and is formed over a gate insulative film comprising a silicon oxide film. A memory gate of the memory transistor comprises an n-type polycrystal silicon film and is disposed on one of the side walls of the control gate. The memory gate comprises a doped polycrystal silicon film with a sheet resistance lower than that of the control gate comprising a polycrystal silicon film formed by ion implantation of impurities to the undoped silicon film.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takeshi Sakai, Yasushi Ishii, Tsutomu Okazaki, Masaru Nakamichi, Toshikazu Matsui, Kyoya Nitta, Satoru Machida, Munekatsu Nakagawa, Yuichi Tsukada
  • Patent number: 8373216
    Abstract: Technique of improving a manufacturing yield of a semiconductor device including a non-volatile memory cell in a split-gate structure is provided. A select gate electrode of a CG shunt portion is formed so that a second height d2 from the main surface of the semiconductor substrate of the select gate electrode of the CG shunt portion positioned in the feeding region is lower than a first height d1 of the select gate electrode from the main surface of the semiconductor substrate in a memory cell forming region.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiraku Chakihara, Yasushi Ishii
  • Publication number: 20120313160
    Abstract: Provided is a semiconductor device having, over a semiconductor substrate, a control gate electrode and a memory gate electrode which are adjacent to each other and constitute a nonvolatile memory. The height of the memory gate electrode is lower than the height of the control gate electrode. A metal silicide film is formed over the upper surface of the control gate electrode, but not formed over the upper surface of the memory gate electrode. The memory gate electrode has, over the upper surface thereof, a sidewall insulating film made of silicon oxide. This sidewall insulating film is formed in the same step as that for the formation of respective sidewall insulating films over the sidewalls of the memory gate electrode and the control gate electrode. The present invention makes it possible to improve the production yield and performance of the semiconductor device having a nonvolatile memory.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Inventors: Koichi TOBA, Yasushi Ishii, Yoshiyuki Kawashima, Satoru Machida, Munekatsu Nakagawa, Takashi Hashimoto
  • Publication number: 20120306051
    Abstract: In connection with a semiconductor device including a capacitor element there is provided a technique capable of improving the reliability of the capacitor element. A capacitor element is formed in an element isolation region formed over a semiconductor substrate. The capacitor element includes a lower electrode and an upper electrode formed over the lower electrode through a capacitor insulating film. Basically, the lower electrode and the upper electrode are formed from polysilicon films and a cobalt silicide film formed over the surfaces of the polysilicon films. End portions of the cobalt silicide film formed over the upper electrode are spaced apart a distance from end portions of the upper electrode. Besides, end portions of the cobalt silicide film formed over the lower electrode are spaced apart a distance from boundaries between the upper electrode and the lower electrode.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 6, 2012
    Inventors: Yoshiyuki Kawashima, Koichi Toba, Yasushi Ishii, Toshikazu Matsui, Takashi Hashimoto
  • Publication number: 20120299084
    Abstract: To improve the electric performance and reliability of a semiconductor device. A memory gate electrode of a split gate type nonvolatile memory is a metal gate electrode formed from a stacked film of a metal film 6a and a silicon film 6b over the metal film 6a. In an upper end part of the metal film 6a, a metal oxide portion 17 is formed by oxidation of a part of the metal film 6a. A control gate electrode of the split gate type nonvolatile memory is a metal gate electrode formed from a stacked film of a metal film 4a and the silicon film 4b over the metal film 4a.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 29, 2012
    Inventors: Kentaro SAITO, Kazumasa YANAGISAWA, Yasushi ISHII, Koichi TOBA
  • Patent number: 8319265
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: November 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsutomu Okazaki, Daisuke Okada, Kyoya Nitta, Toshihiro Tanaka, Akira Kato, Toshikazu Matsui, Yasushi Ishii, Digh Hisamoto, Kan Yasui
  • Publication number: 20120292679
    Abstract: A memory cell of a nonvolatile memory and a capacitive element are formed over the same semiconductor substrate. The memory cell includes a control gate electrode formed over the semiconductor substrate via a first insulating film, a memory gate electrode formed adjacent to the control gate electrode over the semiconductor substrate via a second insulating film, and the second insulating film having therein a charge storing portion. The capacitive element includes a lower electrode formed of the same layer of a silicon film as the control gate electrode, a capacity insulating film formed of the same insulating film as the second insulating film, and an upper electrode formed of the same layer of a silicon film as the memory gate electrode. The concentration of impurities of the upper electrode is higher than that of the memory gate electrode.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 22, 2012
    Inventors: Kota FUNAYAMA, Hiraku Chakihara, Yasushi Ishii
  • Patent number: 8278169
    Abstract: The present invention provides a technology capable of reducing an area occupied by a nonvolatile memory while improving the reliability of the nonvolatile memory. In a semiconductor device, the structure of a code flash memory cell is differentiated from that of a data flash memory cell. More specifically, in the code flash memory cell, a memory gate electrode is formed only over the side surface on one side of a control gate electrode to improve a reading speed. In the data flash memory cell, on the other hand, a memory gate electrode is formed over the side surfaces on both sides of a control gate electrode. By using a multivalued memory cell instead of a binary memory cell, the resulting data flash memory cell can have improved reliability while preventing deterioration of retention properties and reduce its area.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 2, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Koichi Toba, Yasushi Ishii, Yoshiyuki Kawashima, Takashi Hashimoto, Kosuke Okuyama