Patents by Inventor Yasutoshi Suzuki

Yasutoshi Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6747329
    Abstract: A plularity of sensor chips, each having strain gauges and a thin diaphragm, are formed on a semiconductor wafer having an upper layer and a lower layer forming a P-N junction plane therebetween. The sensor chips are separated into individual pieces by dicing along column and row interstices dividing the sensor chips. Conductor lines for supplying an electrical voltage for electrochemically etching the diaphragms are formed on and along the interstices. All of the conductor lines are removed by a dicing blade having a wider width than the conductor lines to avoid electrical leakage due to particles of conductor lines leftover on side surfaces of the diced out sensor chips.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: June 8, 2004
    Assignee: Denso Corporation
    Inventors: Shinji Yoshihara, Yasutoshi Suzuki
  • Patent number: 6744258
    Abstract: In a capacitive sensor apparatus, a capacitive sensor includes a plurality of physical-quantity-detection capacitors each having a movable electrode and a fixed electrode. A conversion device operates for converting an output signal of the capacitive sensor into an apparatus output signal. Each of the physical-quantity-detection capacitors is selectively connected and disconnected to and from the conversion device. A determination is made as to whether or not each of the physical-quantity-detection capacitors fails in response to the sensor output signal. When it is determined that a first one of the physical-quantity-detection capacitors fails, the first one is disconnected from the conversion device and a second one of the physical-quantity-detection capacitors is connected to the conversion device.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: June 1, 2004
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki, Hajime Ito, Yasuaki Makino, Norikazu Ohta, Keiichi Shimaoka, Hirofumi Funabashi
  • Patent number: 6734671
    Abstract: Magnetoresistive devices are formed on the insulating surface of a substrate made of silicon. The devices are connected in series through an insulating film using a wiring layer formed on the surface of the substrate. An insulating film for passivation is formed to cover the devices and the wiring layer. A magnetic shield layer of Ni—Fe alloy is formed on the passivation insulating film through an organic film for relieving thermal stress to cover one of the devices. After removal of the sensor chip containing the magnetoresistive devices and other components from the wafer, the chip is bonded to a lead frame through an Ag paste layer by heat treatment. Preferably, the magnetic shield layer is made of a Ni—Fe alloy having a Ni content of 69% or less.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: May 11, 2004
    Assignee: Denso Corporation
    Inventors: Yuichiro Murata, Inao Toyoda, Yasutoshi Suzuki, Hirofumi Uenoyama, Toshihisa Suzuki, Osamu Mochizuki, Kiyoshi Natsume
  • Publication number: 20040061193
    Abstract: A light-receiving element having a light-receiving portion is formed on a chip surface. A digital circuit element, an analog circuit element and a circuit adjusting element are provided for cooperatively processing a detection signal produced from the light-receiving element. And, a light-shielding film is provided for selectively setting a light-receiving region on the chip surface.
    Type: Application
    Filed: July 3, 2003
    Publication date: April 1, 2004
    Inventors: Inao Toyoda, Masaki Takashima, Yasutoshi Suzuki
  • Publication number: 20040032279
    Abstract: An external connection wire is externally connected and is bonded to a portion of a predetermined exposed region of a bonding pad, which is exposed through a bonding pad opening of a passivation film. The bonding pad opening of the passivation film has a polygonal shape that has a plurality of corners, and each of the plurality of corners has an obtuse angle or is chamfered. A probe pad is electrically connected to the bonding pad through a conductive line covered with the passivation film. The passivation film is also located on the probe pad and further includes a probe pad opening, through which a predetermined exposed region of the probe pad is exposed. The probe pad opening has a polygonal shape that has a plurality of corners, and each of the plurality of corners has an obtuse angle or is chamfered.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 19, 2004
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki
  • Patent number: 6658948
    Abstract: A bridge circuit includes four gage resistors. Each gage resistor is divided into two division gage resistors. A couple of division gage resistors. The junction points between division gage resistors outputting the same potential when no pressure is applied are used for diagnostic. Four gage resistors out of the eight gage resistors are arranged near the center of diaphragm 14, and the other four division resistors are arranged near the peripheral edge portion of the diaphragm 14 to make the stress distribution even.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: December 9, 2003
    Assignee: Denso Corporation
    Inventors: Shinji Yoshihara, Yasutoshi Suzuki
  • Patent number: 6661225
    Abstract: In a revolution detecting device, a tunneling magnetoresistance sensor having an element located in a region is provided. The tunneling magnetoresistance sensor comprises a substrate, a pinned layer composed of ferromagnetism material and located to one side of the substrate, a tunneling layer composed of insulating film and located to one side of the pinned layer and a free layer composed of ferromagnetism film and located to one side of the tunneling layer. The element is configured to detect a change of magnetoresistance of the element according to a magnetic field applied in the region in which the element is located. The change of the magnetoresistance of the element is based on a change of current flowing through the tunneling layer between the pinned layer and the free layer. In the revolution detecting device, a revolution member is disposed in a vicinity of the element in the Y axis from a viewpoint of the element. The revolution member has a surface portion opposite to the element.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: December 9, 2003
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Yasutoshi Suzuki, Yuichiro Murata, Hirofumi Uenoyama
  • Patent number: 6653702
    Abstract: A semiconductor pressure sensor includes a SOI substrate composed of first and second silicon substrates. A diaphragm portion is formed by the first silicon substrate as a bottom of a recess portion formed in the second silicon substrate. Strain gauges are formed on the diaphragm portion, and a circuit portion is formed on the first silicon substrate at a region other than the diaphragm portion. A LOCOS film for isolating the strain gauges from the circuit portion is formed on the first silicon substrate outside the outermost peripheral portion of the diaphragm portion.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: November 25, 2003
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Inao Toyoda, Kazuaki Hamamoto, Yasutoshi Suzuki
  • Patent number: 6647795
    Abstract: A capacitive physical load sensor includes a substrate, which has fixed electrodes, and a diaphragm, which has movable electrodes. The diaphragm is located across a gap from the substrate, and retaining parts for the diaphragm are formed around the diaphragm. Protruding parts extend into the gap from the diaphragm or from the substrate. The protruding parts support the diaphragm at different levels of deformation to alter the characteristics of the diaphragm and extend its range.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Denso Corporation
    Inventors: Yasutoshi Suzuki, Seiichiro Ishio, Keiichi Shimaoka, Norikazu Ohta, Hirofumi Funabashi
  • Publication number: 20030211638
    Abstract: Magnetoresistive devices are formed on the insulating surface of a substrate made of silicon. The devices are connected in series through an insulating film using a wiring layer formed on the surface of the substrate. An insulating film for passivation is formed to cover the devices and the wiring layer. A magnetic shield layer of Ni—Fe alloy is formed on the passivation insulating film through an organic film for relieving thermal stress to cover one of the devices. After removal of the sensor chip containing the magnetoresistive devices and other components from the wafer, the chip is bonded to a lead frame through an Ag paste layer by heat treatment. Preferably, the magnetic shield layer is made of a Ni—Fe alloy having a Ni content of 69% or less.
    Type: Application
    Filed: June 11, 2003
    Publication date: November 13, 2003
    Inventors: Yuichiro Murata, Inao Toyoda, Yasutoshi Suzuki, Hirofumi Uenoyama, Toshihisa Suzuki, Osamu Mochizuki, Kiyoshi Natsume
  • Patent number: 6640643
    Abstract: On a substrate, first and second capacitive portions are formed to have movable diaphragms having different areas for pressure measurement and diagnostic, wherein a communication structure is provided between the cavity spaces of the first and second capacitive portions to equalize the pressure in the first capacitive space to that of the second capacitive space. The different sizes provide different sensitivity for efficient diagnostic. The first and second capacitive portions can be made in one diaphragm, wherein the second capacitive portion is formed around the first capacitive portion. The cavity spaces of the first and second capacitive portions are connected. Moreover, between the first and second capacitive spaces, an insulation portion may be formed in a ring shape to support the diaphragm portion of the first capacitive portion and the diaphragm portion the second capacitive portion with communication portions.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: November 4, 2003
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki, Keiichi Shimaoka, Hirofumi Funabashi
  • Publication number: 20030203528
    Abstract: A method for manufacturing a dynamic quantity detection device that is formed by bonding a semiconductor chip that includes a detection element for detecting a dynamic quantity to a stand using a bonding layer includes: forming a semiconductor chip that includes a detection element used for correlating a dynamic quantity to be detected to an electric quantity and a plurality of processing circuit elements used for making up a circuit that processes the electric quantity; placing a bonding layer on a stand; placing the semiconductor chip on the bonding layer; bonding the semiconductor chip to the stand by sintering the bonding layer; and annealing the semiconductor chip in an atmosphere that contains hydrogen in order to cure a change, which is caused during the bonding of the semiconductor chip, in a characteristic of one of the processing circuit elements.
    Type: Application
    Filed: April 21, 2003
    Publication date: October 30, 2003
    Inventors: Yasutoshi Suzuki, Shinji Yoshihara
  • Publication number: 20030194836
    Abstract: A method for manufacturing a dynamic quantity detection device that is formed by bonding a semiconductor chip that includes a detection element for detecting a dynamic quantity to a stand using a bonding layer includes: forming a semiconductor chip that includes a detection element used for correlating a dynamic quantity to be detected to an electric quantity and a processing circuit element used for making up a circuit that processes the electric quantity; placing a bonding layer on a stand; placing the semiconductor chip on the bonding layer; and bonding the semiconductor chip to the stand by sintering the bonding layer at 400° C. or lower in order to suppress a change in a characteristic of the processing circuit element.
    Type: Application
    Filed: April 2, 2003
    Publication date: October 16, 2003
    Inventors: Yasutoshi Suzuki, Shinji Yoshihara, Takahiko Yoshida
  • Patent number: 6615668
    Abstract: A diaphragm that distorts according to pressure applied thereon and a signal processor circuit are formed on a semiconductor substrate having an (110)-surface-orientation. Stain gauges converting the diaphragm distortion into an electric signal and forming a bridge circuit are formed on the diaphragm. The electric signal from the bridge circuit is processed by the signal processor circuit. A pair of transistors constituting an input circuit of an amplifier in the signal processor circuit are positioned on the substrate to equalize their source-drain current directions. Thermal stress influence on the sensor outputs is minimized since sensor components are formed on the substrate having the (110)-surface orientation, and thereby the pressure applied to the diaphragm is accurately detected.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 9, 2003
    Assignee: Denso Corporation
    Inventors: Inao Toyoda, Yasutoshi Suzuki
  • Publication number: 20030154796
    Abstract: A pressure sensor includes a sensor element, and a resin package member that holds the sensor element. The sensor element is constructed by a semiconductor, and is capable of externally outputting an electric signal in accordance with strain generated when force is applied thereto. The sensor element is directly adhered to the package member via an adhesive layer that has Young's modulus in a range between 2.45×103 Pa and 2.06×104 Pa. Further the adhesive layer has a thickness equal to or more than 110 &mgr;m. Accordingly, the pressure sensor effectively restricts a variation in a sensor characteristic due to a thermal change.
    Type: Application
    Filed: December 5, 2002
    Publication date: August 21, 2003
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki
  • Patent number: 6601452
    Abstract: A semiconductor pressure sensor has a recess formed on a semiconductor substrate. The recess has a sidewall, a bottom wall that serves as a diaphragm for detecting a pressure, and a corner portion provided between the sidewall and the bottom wall and having a radius of curvature R. The radius of curvature R satisfies a formula of: R/S=526·(d/S)2−0.037·(d/S)+a1, where S is an area of the diaphragm, d is a thickness of the diaphragm, and a1 is in a range of 9.6×10−7 to 16×10−7 inclusive.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 5, 2003
    Assignee: Denso Corporation
    Inventors: Yuichiro Murata, Inao Toyoda, Yasutoshi Suzuki
  • Publication number: 20030137381
    Abstract: In a revolution detecting device, a tunneling magnetoresistance sensor having an element located in a region is provided. The tunneling magnetoresistance sensor comprises a substrate, a pinned layer composed of ferromagnetism material and located to one side of the substrate, a tunneling layer composed of insulating film and located to one side of the pinned layer and a free layer composed of ferromagnetism film and located to one side of the tunneling layer. The element is configured to detect a change of magnetoresistance of the element according to a magnetic field applied in the region in which the element is located. The change of the magnetoresistance of the element is based on a change of current flowing through the tunneling layer between the pinned layer and the free layer. In the revolution detecting device, a revolution member is disposed in a vicinity of the element in the Y axis from a viewpoint of the element. The revolution member has a surface portion opposite to the element.
    Type: Application
    Filed: January 22, 2003
    Publication date: July 24, 2003
    Inventors: Inao Toyoda, Yasutoshi Suzuki, Yuichiro Murata, Hirofumi Uenoyama
  • Patent number: 6595065
    Abstract: A pressure detecting apparatus has a single-crystal semiconductor sensor chip disposed on a metallic diaphragm through a low melting point glass. The sensor chip has a planar shape selected from a circular shape, a first polygonal shape having more than five sides and having interior angles all less than 180°, and a second polygonal shape having a ratio of a circumscribed circle diameter relative to an inscribed circle diameter being less than 1.2. Four strain gauge resistors are disposed on X, Y axes passing through a center point O of the sensor chip in parallel with <110> directions. Accordingly, thermal stress is reduced not to adversely affect a detection error and simultaneously high sensitivity is provided.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: July 22, 2003
    Assignee: Denso Corporation
    Inventors: Yukihiko Tanizawa, Kazuaki Hamamoto, Inao Toyoda, Hiroaki Tanaka, Yasutoshi Suzuki
  • Patent number: 6595067
    Abstract: In a pressure sensor made by bonding a sensor chip and a metal stem together with a resin adhesive, fluctuation of the sensor output caused by temperature changes are maximally reduced. The resin adhesive for bonding together the sensor element and the metal stem has a creep characteristic defined as CR=A×&sgr;B between its creep rate CR and stress &sgr; upon it with A and B being constants. The resin adhesive is selected to satisfy that the constant B is not greater than 3.5.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: July 22, 2003
    Assignee: Denso Corporation
    Inventors: Yasutoshi Suzuki, Hiroaki Tanaka
  • Patent number: 6584852
    Abstract: An electrical capacitance pressure sensor has a lower electrode, a movable electrode, and an upper electrode. A first cavity portion is formed between the lower electrode and the movable electrode. A second cavity portion is formed between the upper electrode and the movable electrode. The substrate has an opening portion that penetrates the substrate from the first surface to the second surface thereof. The lower electrode has at least one first window portion that penetrates the lower electrode from the side of the substrate to the side of the first cavity portion and communicates the cavity portion to the opening portion of the substrate. The upper electrode has at least one second window portion that penetrates the upper electrode from the side of the cavity portion to the outside thereof to communicate the cavity portion with the outside.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: July 1, 2003
    Assignee: Denso Corportation
    Inventors: Yasutoshi Suzuki, Seiichiro Ishio, Tetsuo Fujii, Keiichi Shimaoka, Hirofumi Funahashi