Patents by Inventor Yee-Chia Yeo

Yee-Chia Yeo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12243783
    Abstract: A method includes etching a first recess adjacent a first dummy gate stack and a first fin; etching a second recess adjacent a second dummy gate stack and a second fin; and epitaxially growing a first epitaxy region in the first recess. The method further includes depositing a first metal-comprising mask over the first dummy gate stack, over the second dummy gate stack, over the first epitaxy region in the first recess, and in the second recess; patterning the first metal-comprising mask to expose the first dummy gate stack and the first epitaxy region; epitaxially growing a second epitaxy region in the first recess over the first epitaxy region; and after epitaxially growing the second epitaxy region, removing remaining portions of the first metal-comprising mask.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: March 4, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hui-Lin Huang, Li-Li Su, Yee-Chia Yeo, Chii-Horng Li
  • Patent number: 12237211
    Abstract: A method of forming a semiconductor device includes mounting a bottom wafer on a bottom chuck and mounting a top wafer on a top chuck, wherein one of the bottom chuck and the top chuck has a gasket. The top chuck is moved towards the bottom chuck. The gasket forms a sealed region between the bottom chuck and the top chuck around the top wafer and the bottom wafer. An ambient pressure in the sealed region is adjusted. The top wafer is bonded to the bottom wafer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 25, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chieh Chang, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20250063807
    Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first thickness.
    Type: Application
    Filed: November 5, 2024
    Publication date: February 20, 2025
    Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
  • Patent number: 12230532
    Abstract: A method of forming a semiconductor device includes loading a first wafer and a second wafer into a wafer bonding system. A relative humidity within the wafer bonding system is measured a first time. After measuring the relative humidity, the relative humidity within the wafer bonding system may be adjusted to be within a desired range. When the relative humidity is within the desired range, the first wafer is bonded to the second wafer.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 18, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun Chen Teng, Chen-Fong Tsai, Han-De Chen, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12224327
    Abstract: Methods for improving sealing between contact plugs and adjacent dielectric layers and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first dielectric layer over a conductive feature, a first portion of the first dielectric layer including a first dopant; a metal feature electrically coupled to the conductive feature, the metal feature including a first contact material in contact with the conductive feature; a second contact material over the first contact material, the second contact material including a material different from the first contact material, a first portion of the second contact material further including the first dopant; and a dielectric liner between the first dielectric layer and the metal feature, a first portion of the dielectric liner including the first dopant.
    Type: Grant
    Filed: August 7, 2023
    Date of Patent: February 11, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Ju Chen, Shih-Hsiang Chiu, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12218203
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a fin active region formed on a semiconductor substrate and spanning between a first sidewall of a first shallow trench isolation (STI) feature and a second sidewall of a second STI feature; an anti-punch through (APT) feature of a first type conductivity; and a channel material layer of the first type conductivity, disposed on the APT feature and having a second doping concentration less than the first doping concentration. The APT feature is formed on the fin active region, spans between the first sidewall and the second sidewall, and has a first doping concentration.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: February 4, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yi Peng, Ling-Yen Yeh, Chi-Wen Liu, Chih-Sheng Chang, Yee-Chia Yeo
  • Patent number: 12218222
    Abstract: A method includes forming a fin over a substrate, forming an isolation region adjacent the fin, forming a dummy gate structure over the fin, and recessing the fin adjacent the dummy gate structure to form a first recess using a first etching process. The method also includes performing a plasma clean process on the first recess, the plasma clean process including placing the substrate on a holder disposed in a process chamber, heating the holder to a process temperature between 300° C. and 1000° C., introducing hydrogen gas into a plasma generation chamber connected to the process chamber, igniting a plasma within the plasma generation chamber to form hydrogen radicals, and exposing surfaces of the recess to the hydrogen radicals. The method also includes epitaxially growing a source/drain region in the first recess.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: February 4, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Wei Lee, Che-Yu Lin, Hsueh-Chang Sung, Yee-Chia Yeo
  • Patent number: 12218196
    Abstract: A method includes depositing a multi-layer stack on a semiconductor substrate, the multi-layer stack including a plurality of sacrificial layers that alternate with a plurality of channel layers; forming a dummy gate on the multi-layer stack; forming a first spacer on a sidewall of the dummy gate; performing a first implantation process to form a first doped region, the first implantation process having a first implant energy and a first implant dose; performing a second implantation process to form a second doped region, where the first doped region and the second doped region are in a portion of the channel layers uncovered by the first spacer and the dummy gate, the second implantation process having a second implant energy and a second implant dose, where the second implant energy is greater than the first implant energy, and where the first implant dose is different from the second implant dose.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: February 4, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chang Lin, Chun-Hung Wu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12211820
    Abstract: Wafer bonding apparatus and method are provided. A method includes performing a first plasma activation process on a first surface of a first wafer. The first plasma activation process forms a first high-activation region and a first low-activation region on the first surface of the first wafer. A first cleaning process is performed on the first surface of the first wafer. The first cleaning process forms a first plurality of silanol groups in the first high-activation region and the first low-activation region. The first high-activation region includes more silanol groups than the first low-activation region. The first wafer is bonded to a second wafer.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 28, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-I Chu, Han-De Chen, Chen-Fong Tsai, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12211901
    Abstract: A semiconductor device may include a semiconductor fin, a source/drain region extending from the semiconductor fin, and a gate electrode over the semiconductor fin. The semiconductor fin may include a first well and a channel region over the first well. The first well may have a first dopant at a first dopant concentration and the channel region may have the first dopant at a second dopant concentration smaller than the first dopant concentration. The first dopant concentration may be in range from 1017 atoms/cm3 to 1019 atoms/cm3.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 28, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bau-Ming Wang, Che-Fu Chiu, Chun-Feng Nieh, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12205994
    Abstract: A method of forming a semiconductor device includes forming a source/drain region and a gate electrode adjacent the source/drain region, forming a hard mask over the gate electrode, forming a bottom mask over the source/drain region, wherein the gate electrode is exposed, and performing a nitridation process on the hard mask over the gate electrode. The bottom mask remains over the source/drain region during the nitridation process and is removed after the nitridation. The method further includes forming a silicide over the source/drain region after removing the bottom mask.
    Type: Grant
    Filed: November 6, 2023
    Date of Patent: January 21, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsan-Chun Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12199156
    Abstract: A method includes forming a source/drain region, forming a dielectric layer over the source/drain region, and etching the dielectric layer to form a contact opening. The source/drain region is exposed to the contact opening. The method further includes depositing a dielectric spacer layer extending into the contact opening, etching the dielectric spacer layer to form a contact spacer in the contact opening, implanting a dopant into the source/drain region through the contact opening after the dielectric spacer layer is deposited, and forming a contact plug to fill the contact opening.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 14, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Chou, Yi-Syuan Siao, Su-Hao Liu, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12198931
    Abstract: A method is disclosed that includes performing a directional ion implantation process on a developed resist pattern to reduce roughness. A substrate can be tilted at a tilt angle with respect to the direction of an incoming ion beam. Ions can be directionally implanted at the tilt angle, along sidewall surfaces of the developed resist pattern to trim roughness from the sidewall surfaces. After implanting, the substrate can be rotated along the axis normal to a surface, and ions can then be directionally implanted at the tilt angle along the sidewall surfaces to further trim roughness from the sidewall surfaces of the developed resist pattern. The directional ion implantation process can be performed over a number of iterations, and during each iteration of the directional ion implantation process, the tilt angle can be adjusted so that the tilt angle is different than during previous iterations.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: January 14, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12191393
    Abstract: A nano-FET and a method of forming is provided. In some embodiments, a nano-FET includes an epitaxial source/drain region contacting ends of a first nanostructure and a second nanostructure. The epitaxial source/drain region may include a first semiconductor material layer of a first semiconductor material, such that the first semiconductor material layer includes a first segment contacting the first nanostructure and a second segment contacting the second nanostructure, wherein the first segment is separated from the second segment. A second semiconductor material layer is formed over the first segment and the second segment. The second semiconductor material layer may include a second semiconductor material having a higher concentration of dopants of a first conductivity type than the first semiconductor material layer. The second semiconductor material layer may have a lower concentration percentage of silicon than the first semiconductor material layer.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yan-Ting Lin, Yen-Ru Lee, Chien-Chang Su, Chih-Yun Chin, Chien-Wei Lee, Pang-Yen Tsai, Chii-Horng Li, Yee-Chia Yeo
  • Patent number: 12191174
    Abstract: In an embodiment, a pattern transfer processing chamber includes a pattern transfer processing chamber and a loading area external to the pattern transfer processing chamber. The loading area is configured to transfer a wafer to or from the pattern transfer processing chamber. The loading area comprises a first region including a loadport, a second region including a load-lock between the first region and the pattern transfer processing chamber, and an embedded baking chamber configured to heat a patterned photoresist on the wafer.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 12191212
    Abstract: A method includes forming a fin extending from a substrate; depositing a liner over a top surface and sidewalls of the fin, where the minimum thickness of the liner is dependent on selected according to a first germanium concentration of the fin; forming a shallow trench isolation (STI) region adjacent the fin; removing a first portion of the liner on sidewalls of the fin, the first portion of the liner being above a topmost surface of the STI region; and forming a gate stack on sidewalls and a top surface of the fin, where the gate stack is in physical contact with the liner.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Cheng Li, Pin-Ju Liang, Ta-Chun Ma, Pei-Ren Jeng, Yee-Chia Yeo
  • Patent number: 12191304
    Abstract: In a method of forming a FinFET, a first sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is recessed so that a remaining layer of the first sacrificial layer is formed on the isolation insulating layer and an upper portion of the source/drain structure is exposed. A second sacrificial layer is formed on the remaining layer and the exposed source/drain structure. The second sacrificial layer and the remaining layer are patterned, thereby forming an opening. A dielectric layer is formed in the opening. After the dielectric layer is formed, the patterned first and second sacrificial layers are removed to form a contact opening over the source/drain structure. A conductive layer is formed in the contact opening.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung Ying Lee, Ziwei Fang, Yee-Chia Yeo, Meng-Hsuan Hsiao
  • Patent number: 12191369
    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a semiconductor stack on a substrate, wherein the semiconductor stack includes a first semiconductor layers and a second semiconductor layers alternatively disposed, the first semiconductor layers and the second semiconductor layers being different in composition; patterning the semiconductor stack to form a semiconductor fin; forming a dielectric fin next to the semiconductor fin; forming a first gate stack on the semiconductor fin and the dielectric fin; etching to a portion of the semiconductor fin within a source/drain region, resulting in a source/drain recess; and epitaxially growing a source/drain feature in the source/drain recess, defining an airgap spanning between a sidewall of the source/drain feature and a sidewall of the dielectric fin.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Lin, Wei-Yang Lee, Chia-Pin Lin, Tzu-Hua Chiu, Kuan-Hao Cheng, Wei-Han Fan, Yee-Chia Yeo, Wei Hao Lu
  • Patent number: 12191378
    Abstract: A fin field effect transistor device structure includes a fin structure formed over a substrate. The structure also includes a liner layer and an isolation structure surrounding the fin structure. The structure also includes a gate dielectric layer formed over the fin structure and the isolation structure. The structure also includes a gate structure formed over the gate dielectric layer. The structure also includes source/drain epitaxial structures formed on opposite sides of the gate structure. The fin structure includes a protruding portion laterally extending over the liner layer.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Ma, Yee-Chia Yeo
  • Patent number: 12183632
    Abstract: A method includes forming a metallic feature, forming an etch stop layer over the metallic feature, implanting the metallic feature with a dopant, forming a dielectric layer over the etch stop layer, performing a first etching process to etch the dielectric layer and the etch stop layer to form a first opening, performing a second etching process to etch the metallic feature and to form a second opening in the metallic feature, wherein the second opening is joined with the first opening, and filling the first opening and the second opening with a metallic material to form a contact plug.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: December 31, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Chou, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo