Patents by Inventor Yen Chan

Yen Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145381
    Abstract: In some embodiments, the present disclosure relates an integrated chip including a substrate. A conductive interconnect feature is arranged over the substrate. The conductive interconnect feature has a base feature portion with a base feature width and an upper feature portion with an upper feature width. The upper feature width is narrower than the base feature width such that the conductive interconnect feature has tapered outer feature sidewalls. An interconnect via is arranged over the conductive interconnect feature. The interconnect via has a base via portion with a base via width and an upper via portion with an upper via width. The upper via width is wider than the base via width such that the interconnect via has tapered outer via sidewalls.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Shin-Yi Yang, Hsin-Yen Huang, Ming-Han Lee, Shau-Lin Shue, Yu-Chen Chan, Meng-Pei Lu
  • Publication number: 20240071944
    Abstract: The invention relates to the field of chip fabrication, in particular to the fabrication of superconducting integrated circuits for use in quantum computers. Raised and recessed alignment structures are provided on the surfaces of two substrate such that the raised and recessed alignment structure extends within the recessed alignment structure to a maximum depth determined by the geometry of the alignment structures. The alignment structures act as a hard stop for positioning and aligning the substrates for flip chip bonding.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Máté JENEI, Kok Wai Chan, Kuan Yen Tan
  • Patent number: 11916548
    Abstract: A buffer circuit includes an input terminal configured to receive an input signal, an output terminal, an inverter, and a resistor-capacitor (RC) circuit coupled in series with the inverter between the input terminal and the output terminal. The RC circuit includes an NMOS transistor coupled between an RC circuit output terminal and a reference node, a resistor coupled between the RC circuit output terminal and a power supply node, and a capacitor coupled between the RC circuit output terminal and one of the power supply node or the reference node, and the inverter and the RC circuit are configured to generate an output signal at the output terminal based on the input signal.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yen Lin, Yuan-Ju Chan, Bo-Ting Chen
  • Publication number: 20230422187
    Abstract: The transmission power at which to drive an antenna of a computing device is adjusted based on a peak transmission gain of the antenna for a current physical configuration mode in which the computing device is operating and on a maximum permitted radiation for the antenna. The antenna is driven at the adjusted transmission power when performing wireless communication using the antenna.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Cheng-Fang Lin, Huai-Yung Yen, Ruei-Ting Lin, Ren-Hao Chen, Lo-Chun Tung, Sheng-Yen Chan, Hsiao Chun Su
  • Patent number: 11770924
    Abstract: A method of forming a semiconductor device includes the following steps. First of all, a substrate is provided, and a dielectric layer is formed on the substrate. Then, at least one trench is formed in the dielectric layer, to partially expose a top surface of the substrate. The trench includes a discontinuous sidewall having a turning portion. Next, a first deposition process is performed, to deposit a first semiconductor layer to fill up the trench and to further cover on the top surface of the dielectric layer. Following these, the first semiconductor layer is laterally etched, to partially remove the first semiconductor layer till exposing the turning portion of the trench. Finally, a second deposition is performed, to deposit a second semiconductor layer to fill up the trench.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: September 26, 2023
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Luo-Hsin Lee, Ting-Pang Chung, Shih-Han Hung, Po-Han Wu, Shu-Yen Chan, Shih-Fang Tzou
  • Publication number: 20230189498
    Abstract: A method of forming a semiconductor device includes the following steps. First of all, a substrate is provided, and a dielectric layer is formed on the substrate. Then, at least one trench is formed in the dielectric layer, to partially expose a top surface of the substrate. The trench includes a discontinuous sidewall having a turning portion. Next, a first deposition process is performed, to deposit a first semiconductor layer to fill up the trench and to further cover on the top surface of the dielectric layer. Following these, the first semiconductor layer is laterally etched, to partially remove the first semiconductor layer till exposing the turning portion of the trench. Finally, a second deposition is performed, to deposit a second semiconductor layer to fill up the trench.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 15, 2023
    Applicants: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Luo-Hsin Lee, Ting-Pang Chung, Shih-Han Hung, Po-Han Wu, Shu-Yen Chan, Shih-Fang Tzou
  • Patent number: 11631679
    Abstract: A method of forming a semiconductor device includes the following steps. First of all, a substrate is provided, and a dielectric layer is formed on the substrate. Then, at least one trench is formed in the dielectric layer, to partially expose a top surface of the substrate. The trench includes a discontinuous sidewall having a turning portion. Next, a first deposition process is performed, to deposit a first semiconductor layer to fill up the trench and to further cover on the top surface of the dielectric layer. Following these, the first semiconductor layer is laterally etched, to partially remove the first semiconductor layer till exposing the turning portion of the trench. Finally, a second deposition is performed, to deposit a second semiconductor layer to fill up the trench.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: April 18, 2023
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Luo-Hsin Lee, Ting-Pang Chung, Shih-Han Hung, Po-Han Wu, Shu-Yen Chan, Shih-Fang Tzou
  • Patent number: 11522593
    Abstract: A method for selecting a beamforming technique, applied in an apparatus of a multi-cell network, provides optimization to maximize effective throughput of communication based on the multi-cell network, the optimization is modelled as a Markovian decision process, and a multi-agent reinforcement learning framework is built based on the multi-cell network. A multi-agent reinforcement learning algorithm is used to generate the optimization and obtain a current beamforming selection strategy of all base stations.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: December 6, 2022
    Assignee: HON LIN TECHNOLOGY CO., LTD.
    Inventors: Chia-Jung Fan, Chien-Jen Hwang, Ching-Ju Lin, Ping-Jung Hsieh, Tsung-Yen Chan
  • Patent number: 11502180
    Abstract: A semiconductor device includes a substrate having at least a trench formed therein. A conductive material fills a lower portion of the trench. A barrier layer is between the conductive material and the substrate. An insulating layer is in the trench and completely covers the conductive material and the barrier layer, wherein a portion of the insulating layer covering the barrier layer has a bird's peak profile.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: November 15, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chia-Wei Wu, Ting-Pang Chung, Tien-Chen Chan, Shu-Yen Chan
  • Publication number: 20220271037
    Abstract: A method of forming a semiconductor device includes the following steps. First of all, a substrate is provided, and a dielectric layer is formed on the substrate. Then, at least one trench is formed in the dielectric layer, to partially expose a top surface of the substrate. The trench includes a discontinuous sidewall having a turning portion. Next, a first deposition process is performed, to deposit a first semiconductor layer to fill up the trench and to further cover on the top surface of the dielectric layer. Following these, the first semiconductor layer is laterally etched, to partially remove the first semiconductor layer till exposing the turning portion of the trench. Finally, a second deposition is performed, to deposit a second semiconductor layer to fill up the trench.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Applicants: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Luo-Hsin Lee, Ting-Pang Chung, Shih-Han Hung, Po-Han Wu, Shu-Yen Chan, Shih-Fang Tzou
  • Patent number: 11393826
    Abstract: A method of forming a semiconductor device includes the following steps. First of all, a substrate is provided, and a dielectric layer is formed on the substrate. Then, at least one trench is formed in the dielectric layer, to partially expose a top surface of the substrate. The trench includes a discontinuous sidewall having a turning portion. Next, a first deposition process is performed, to deposit a first semiconductor layer to fill up the trench and to further cover on the top surface of the dielectric layer. Following these, the first semiconductor layer is laterally etched, to partially remove the first semiconductor layer till exposing the turning portion of the trench. Finally, a second deposition is performed, to deposit a second semiconductor layer to fill up the trench.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 19, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Luo-Hsin Lee, Ting-Pang Chung, Shih-Han Hung, Po-Han Wu, Shu-Yen Chan, Shih-Fang Tzou
  • Patent number: 10847517
    Abstract: A semiconductor device includes a semiconductor substrate having a gate trench including of an upper trench and a lower trench. The upper trench is wider than the lower trench. A gate is embedded in the gate trench. The gate includes an upper portion and a lower portion. A first gate dielectric layer is between the upper portion and a sidewall of the upper trench. The first gate dielectric layer has a first thickness. A second gate dielectric layer is between the lower portion and a sidewall of the lower trench and between the lower portion and a bottom surface of the lower trench. The second gate dielectric layer has a second thickness that is smaller than the first thickness.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: November 24, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Tsuo-Wen Lu, Ger-Pin Lin, Tien-Chen Chan, Shu-Yen Chan
  • Patent number: 10806046
    Abstract: A package structure of a power module is provided. The package structure includes a body having a sidewall, a first protruding structure protruding outward from one end of the sidewall, a second protruding structure protruding outward from another end of the sidewall and opposite to the first protruding structure, and a spring having two ends embedded in the first and the second protruding structures, respectively. The stress is transferred to the first and the second protruding structures via the spring, respectively. The equivalent stiffness of the spring is different from that of the body so that the package structure as a whole suffers the stress uniformly.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 13, 2020
    Assignee: Delta Electronics, Inc.
    Inventors: Shao-Chuan Chen, Hung-Yen Chan, Chuan-Chia Cheng, Hsueh-Kuo Liao, Kai-Ti Chang
  • Publication number: 20200267867
    Abstract: A package structure of a power module is provided. The package structure includes a body having a sidewall, a first protruding structure protruding outward from one end of the sidewall, a second protruding structure protruding outward from another end of the sidewall and opposite to the first protruding structure, and a spring having two ends embedded in the first and the second protruding structures, respectively. The stress is transferred to the first and the second protruding structures via the spring, respectively. The equivalent stiffness of the spring is different from that of the body so that the package structure as a whole suffers the stress uniformly.
    Type: Application
    Filed: October 22, 2019
    Publication date: August 20, 2020
    Inventors: Shao-Chuan CHEN, Hung-Yen CHAN, Chuan-Chia CHENG, Hsueh-Kuo LIAO, Kai-Ti CHANG
  • Patent number: 10724140
    Abstract: A thermal chemical vapor deposition (CVD) system includes a bottom chamber, an upper chamber, a workpiece support, a heater and at least one shielding plate. The upper chamber is present over the bottom chamber. The upper chamber and the bottom chamber define a chamber space therebetween. The workpiece support is configured to support a workpiece in the chamber space. The heater is configured to apply heat to the workpiece. The shielding plate is configured to at least partially shield the bottom chamber from the heat.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Chan Lo, Yi-Fang Lai, Po-Hsiung Leu, Ding-I Liu, Si-Wen Liao, Kai-Shiung Hsu, Jheng-Uei Hsieh, Shian-Huei Lin, Jui-Fu Hsu, Cheng-Tsung Wu
  • Publication number: 20200185505
    Abstract: A semiconductor device includes a substrate having at least a trench formed therein. A conductive material fills a lower portion of the trench. A barrier layer is between the conductive material and the substrate. An insulating layer is in the trench and completely covers the conductive material and the barrier layer, wherein a portion of the insulating layer covering the barrier layer has a bird's peak profile.
    Type: Application
    Filed: February 17, 2020
    Publication date: June 11, 2020
    Inventors: Chia-Wei Wu, Ting-Pang Chung, Tien-Chen Chan, Shu-Yen Chan
  • Patent number: 10626499
    Abstract: A deposition device structure is provided. The deposition device structure includes a heater in a chamber. The deposition device structure also includes a shower head over the heater. The shower head includes holes extending from a top surface of the shower head to a bottom surface of the shower head. The bottom surface of the shower head faces the heater. The bottom surface of the shower head has a first section and a second section. The second section of the bottom surface is rougher than the first section of the bottom surface.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 21, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chan Lo, Huan-Chieh Chen, Yi-Fang Lai, Keith Kuang-Kuo Koai, Chin-Feng Sun, Po-Hsiung Leu, Ding-I Liu, Kai-Shiung Hsu
  • Patent number: 10608086
    Abstract: The present invention provides a semiconductor structure, the semiconductor structure includes a substrate, at least one active area is defined on the substrate, a buried word line is disposed in the substrate, a source/drain region disposed beside the buried word line, a diffusion barrier region, disposed at the top of the source/drain region, the diffusion barrier region comprises a plurality of doping atoms selected from the group consisting of carbon atoms, nitrogen atoms, germanium atoms, oxygen atoms, helium atoms and xenon atoms, a dielectric layer disposed on the substrate, and a contact structure disposed in the dielectric layer, and electrically connected to the source/drain region.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 31, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Ger-Pin Lin, Tien-Chen Chan, Shu-Yen Chan
  • Patent number: 10608093
    Abstract: A semiconductor device and a method of forming the same are disclosed. First, a substrate having a main surface is provided. At least a trench is formed in the substrate. A barrier layer is formed in the trench and a conductive material is formed on the barrier layer and filling up the trench. The barrier layer and the conductive material are then recessed to be lower than the upper surface of the substrate. After that, an oxidation process is performed to oxidize the barrier layer and the conductive material thereby forming an insulating layer.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 31, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chia-Wei Wu, Ting-Pang Chung, Tien-Chen Chan, Shu-Yen Chan
  • Patent number: 10497704
    Abstract: A method of fabricating a buried word line structure includes providing a substrate with a word line trench therein. Two source/drain doped regions are disposed in the substrate at two sides of the word line trench. Later, a silicon oxide layer is formed to cover the word line trench. A titanium nitride layer is formed to cover the silicon oxide layer. Next, a tilt ion implantation process is performed to implant silicon atoms into the titanium nitride layer to transform part of the titanium nitride layer into a titanium silicon nitride layer. A conductive layer is formed in the word line trench. Subsequently, part of the conductive layer, part of the titanium silicon nitride layer and part of the silicon oxide layer are removed to form a recess. Finally, a cap layer fills in the recess.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 3, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Ger-Pin Lin, Kuan-Chun Lin, Chi-Mao Hsu, Shu-Yen Chan, Shih-Fang Tzou, Tsuo-Wen Lu, Tien-Chen Chan, Feng-Yi Chang, Shih-Kuei Yen, Fu-Che Lee