Patents by Inventor Yen Chan

Yen Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180190771
    Abstract: The present invention provides a semiconductor structure, the semiconductor structure includes a substrate, at least one active area is defined on the substrate, a buried word line is disposed in the substrate, a source/drain region disposed beside the buried word line, a diffusion barrier region, disposed at the top of the source/drain region, the diffusion barrier region comprises a plurality of doping atoms selected from the group consisting of carbon atoms, nitrogen atoms, germanium atoms, oxygen atoms, helium atoms and xenon atoms, a dielectric layer disposed on the substrate, and a contact structure disposed in the dielectric layer, and electrically connected to the source/drain region.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Ger-Pin Lin, Tien-Chen Chan, Shu-Yen Chan
  • Publication number: 20180190660
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a memory region defined thereon; forming a trench in the substrate; performing a first ion implantation process to form a first doped region having a first conductive type in the substrate adjacent to the trench; forming a gate electrode in the trench; and performing a second ion implantation process to form a second doped region having a second conductive type in the substrate above the gate electrode.
    Type: Application
    Filed: March 22, 2017
    Publication date: July 5, 2018
    Inventors: Ger-Pin Lin, Yung-Ming Wang, Tien-Chen Chan, Shu-Yen Chan
  • Publication number: 20180190661
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a trench in a substrate; performing an ion implantation process to implant ions into the substrate underneath the trench; performing an in-situ steam generation (ISSG) process to form a gate dielectric layer in the trench; forming a gate electrode on the gate dielectric layer; and forming a doped region in the substrate adjacent to two sides of the gate electrode.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Yung-Ming Wang, Li-Wei Liu, Shu-Yen Chan, Yukihiro Nagai, Tien-Chen Chan, Ger-Pin Lin
  • Publication number: 20180182760
    Abstract: A dielectric structure and a manufacturing method thereof and a memory structure are provided. The dielectric structure includes a dielectric layer and a plurality of crystalline grains disposed in the dielectric layer. The dielectric layer includes a first high-K dielectric material with a first dielectric constant. Each crystalline grain includes a second high-K dielectric material with a second dielectric constant greater than the first dielectric constant and greater than 20. Each crystalline grain has a crystal structure, so that each crystalline grain has a third dielectric constant greater than the second dielectric constant. Whole dielectric constant of the dielectric structure can be raised by performing an annealing process to form the crystalline grains in the dielectric layer, and the capacity of the memory structure for storing electric charges can be increased.
    Type: Application
    Filed: March 21, 2017
    Publication date: June 28, 2018
    Inventors: Ger-Pin Lin, Tien-Chen Chan, Shu-Yen Chan
  • Patent number: 10009321
    Abstract: A method (500) performed by at least one server for processing a data packet from a first computing device to be transmitted to a second computing device is disclosed, in which the data packet includes a message encrypted using a first encryption key to form an encrypted message, identification data of the second computing device encrypted using a second encryption key to form encrypted identification data, and encrypted first and second encryption keys. The method comprises decrypting (504) the encrypted second encryption key; decrypting (506) the encrypted identification data using the decrypted second encryption key; and transmitting (508) the data packet based on the decrypted identification data, wherein the encrypted message and first encryption key are arranged to be undecryptable by the server to permit end-to-end encryption communication between the first and second computing devices. A related system is also disclosed.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: June 26, 2018
    Assignee: TreeBox Solutions Pte Ltd
    Inventors: Li Huang Ng, Chee Wah Chong, Ngai Kain Yip, Hon Tat Lau, Wendy Siew Yen Chan, Tse Chin Teo
  • Patent number: 9966468
    Abstract: A method for fabricating semiconductor device is disclosed. First, a fin-shaped structure is formed on a substrate, a first liner is formed on the substrate and the fin-shaped structure, a second liner is formed on the first liner, part of the second liner and part of the first liner are removed to expose a top surface of the fin-shaped structure, part of the first liner between the fin-shaped structure and the second liner is removed to form a recess, and an epitaxial layer is formed in the recess.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 8, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tien-Chen Chan, Yi-Fan Li, Li-Wei Feng, Ming-Hua Chang, Yu-Shu Lin, Shu-Yen Chan
  • Patent number: 9899498
    Abstract: A semiconductor device is provided, including a substrate with an isolation layer formed thereon, wherein the substrate has a fin protruding up through the isolation layer to form a top surface and a pair of lateral sidewalls of the fin above the isolation layer; a silicon-germanium (SiGe) layer epitaxially grown on the top surface and the lateral sidewalls of the fin; and a gate stack formed on the isolation layer and across the fin, wherein the fin and the gate stack respectively extend along a first direction and a second direction. The SiGe layer formed on the top surface has a first thickness, the SiGe layer formed on said lateral sidewall has a second thickness, and a ratio of the first thickness to the second thickness is in a range of 1:10 to 1:30.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: February 20, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tien-Chen Chan, Yi-Fan Li, Yen-Hsing Chen, Chun-Yu Chen, Chung-Ting Huang, Zih-Hsuan Huang, Ming-Hua Chang, Yu-Shu Lin, Shu-Yen Chan
  • Publication number: 20180019324
    Abstract: A semiconductor device is provided, including a substrate with an isolation layer formed thereon, wherein the substrate has a fin protruding up through the isolation layer to form a top surface and a pair of lateral sidewalls of the fin above the isolation layer; a silicon-germanium (SiGe) layer epitaxially grown on the top surface and the lateral sidewalls of the fin; and a gate stack formed on the isolation layer and across the fin, wherein the fin and the gate stack respectively extend along a first direction and a second direction. The SiGe layer formed on the top surface has a first thickness, the SiGe layer formed on said lateral sidewall has a second thickness, and a ratio of the first thickness to the second thickness is in a range of 1:10 to 1:30.
    Type: Application
    Filed: May 9, 2017
    Publication date: January 18, 2018
    Inventors: Tien-Chen Chan, Yi-Fan Li, Yen-Hsing Chen, Chun-Yu Chen, Chung-Ting Huang, Zih-Hsuan Huang, Ming-Hua Chang, Yu-Shu Lin, Shu-Yen Chan
  • Publication number: 20170373191
    Abstract: A method for fabricating semiconductor device is disclosed. First, a fin-shaped structure is formed on a substrate, a first liner is formed on the substrate and the fin-shaped structure, a second liner is formed on the first liner, part of the second liner and part of the first liner are removed to expose a top surface of the fin-shaped structure, part of the first liner between the fin-shaped structure and the second liner is removed to form a recess, and an epitaxial layer is formed in the recess.
    Type: Application
    Filed: July 19, 2016
    Publication date: December 28, 2017
    Inventors: Tien-Chen Chan, Yi-Fan Li, Li-Wei Feng, Ming-Hua Chang, Yu-Shu Lin, Shu-Yen Chan
  • Publication number: 20170294540
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor includes a substrate, two source/drain regions, a gate structure and two salicide layers. The two source/drain regions are partially disposed in the substrate each with a substantially flat top surface higher than a top surface of the substrate, and the two source/drain regions are separated from each other. The two source/drain regions are formed of an epitaxial material. The gate structure is disposed on the substrate between the two source/drain regions. The two salicide layers are disposed on the substantially flat top surfaces of the two source/drain regions, respectively.
    Type: Application
    Filed: April 11, 2016
    Publication date: October 12, 2017
    Inventors: I-Cheng Hu, Kai-Hsiang Wang, Tien-I Wu, Yu-Shu Lin, Shu-Yen Chan
  • Patent number: 9680022
    Abstract: A semiconductor device is provided, including a substrate with an isolation layer formed thereon, wherein the substrate has a fin protruding up through the isolation layer to form a top surface and a pair of lateral sidewalls of the fin above the isolation layer; a silicon-germanium (SiGe) layer epitaxially grown on the top surface and the lateral sidewalls of the fin; and a gate stack formed on the isolation layer and across the fin, wherein the fin and the gate stack respectively extend along a first direction and a second direction. The SiGe layer formed on the top surface has a first thickness, the SiGe layer formed on said lateral sidewall has a second thickness, and a ratio of the first thickness to the second thickness is in a range of 1:10 to 1:30.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 13, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tien-Chen Chan, Yi-Fan Li, Yen-Hsing Chen, Chun-Yu Chen, Chung-Ting Huang, Zih-Hsuan Huang, Ming-Hua Chang, Yu-Shu Lin, Shu-Yen Chan
  • Patent number: 9673324
    Abstract: The present invention provides a metal oxide semiconductor (MOS) device, including a substrate, a gate structure on the substrate and a source/drain region disposed in the substrate at one side of the gate structure and in at least a part of an epitaxial structure, wherein the epitaxial structure includes a first buffer layer, which is an un-doped buffer layer, including a bottom portion disposed on a bottom surface of the epitaxial structure and a sidewall portion disposed on a concave sidewall of the epitaxial structure, an epitaxial layer which is encompassed by the first buffer layer, and a semiconductor layer which is disposed between the first buffer layer and the epitaxial layer. The source/drain region is disposed in the epitaxial structure.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: June 6, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tien-I Wu, I-Cheng Hu, Yu-Shu Lin, Shu-Yen Chan, Neng-Hui Yang
  • Publication number: 20170133460
    Abstract: The present invention provides a method for forming a semiconductor structure, including: first, a substrate is provided. Next, at least two gate structures are formed on the substrate, each gate structure including two spacers disposed on two sides of the gate structure. Afterwards, a dry etching process is performed to remove parts of the substrate, so as to form a recess in the substrate, and a wet etching process is performed, to etch partial sidewalls of the recess, so as to form at least two tips on two sides of the recess respectively. In addition, parts of the spacer are also removed through the wet etching process, and each spacer includes a rounding corner disposed on a bottom surface of the spacer.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 11, 2017
    Inventors: Tien-I Wu, I-cheng Hu, Yu-Shu Lin, Chun-Jen Chen, Tsung-Mu Yang, Kun-Hsin Chen, Neng-Hui Yang, Shu-Yen Chan
  • Publication number: 20170107619
    Abstract: A thermal chemical vapor deposition (CVD) system includes a bottom chamber, an upper chamber, a workpiece support, a heater and at least one shielding plate. The upper chamber is present over the bottom chamber. The upper chamber and the bottom chamber define a chamber space therebetween. The workpiece support is configured to support a workpiece in the chamber space. The heater is configured to apply heat to the workpiece. The shielding plate is configured to at least partially shield the bottom chamber from the heat.
    Type: Application
    Filed: July 27, 2016
    Publication date: April 20, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chan LO, Yi-Fang LAI, Po-Hsiung LEU, Ding-I LIU, Si-Wen LIAO, Kai-Shiung HSU, Jheng-Uei HSIEH, Shian-Huei LIN, Jui-Fu HSU, Cheng-Tsung WU
  • Publication number: 20160134594
    Abstract: A method (500) performed by at least one server for processing a data packet from a first computing device to be transmitted to a second computing device is disclosed, in which the data packet includes a message encrypted using a first encryption key to form an encrypted message, identification data of the second computing device encrypted using a second encryption key to form encrypted identification data, and encrypted first and second encryption keys. The method comprises decrypting (504) the encrypted second encryption key; encryption key; decrypting (506) the encrypted identification data using the decrypted second encryption key; and transmitting (508) the data packet based on the decrypted identification data, wherein the encrypted message and first encryption key are arranged to be undecryptable by the server to permit end-to-end encryption communication between the first and recipient info encryption key end-to-end encryption communication between the first and second computing devices.
    Type: Application
    Filed: April 23, 2014
    Publication date: May 12, 2016
    Applicant: TreeBox Solutions Pte Ltd
    Inventors: Tse Chin TEO, Chee Wah CHONG, Ngai Kain YIP, Hon Tat LAU, Li Huang NG, Wendy Siew Yen CHAN
  • Publication number: 20160072776
    Abstract: A method for exchanging a message (202) between computing devices in a communication network, the message having encrypted data and a scheme identifier, is disclosed.
    Type: Application
    Filed: April 23, 2014
    Publication date: March 10, 2016
    Applicant: TreeBox Solutions Pte Ltd
    Inventors: Ngai Kain YIP, Hon Tat LAU, Chee Wah CHONG, Li Huang NG, Wendy Siew Yen CHAN
  • Patent number: 9276545
    Abstract: Various embodiments described herein relate to a power management block and one or more amplification blocks used in the transmitter of a communication subsystem. The power management block provides improved control for the gain control signal provided to a pre-amplifier and the supply voltage provided to a power amplifier, both of which are included in a selected one of the amplification blocks. The power expended by the power amplifier is optimized by employing a continuous control method in which one or more feedback loops are employed to take into account various characteristics of the transmitter components and control values. Post power amplifier transmission power is detected for input into the one or more feedback loops executed in the power management block. A controller for the power amplifier is design to stabilize the system with respect to gain expansion in the power amplifier.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: March 1, 2016
    Assignee: BLACKBERRY LIMITED
    Inventors: Wen-Yen Chan, Nasserullah Khan, Ian Ka Yin Chung, Hamza Mohaimeen Bari
  • Patent number: 9041249
    Abstract: Systems and methods to operate a power supply. A power supply has an inductor and a capacitor coupled in a substantially series connection. The power supply has a first selectably conductive path that selectably couples a first power pack to the series reactive circuit and a second selectably conductive path that selectably couples the series reactive circuit to a substantially series combination of the first power pack and a second power pack. When the first power pack output voltage is above the threshold, the first selectably conductive path couples electrical current between the first power pack to the series reactive circuit. Otherwise, the second selectably conductive path couples electrical current between the series combination and the series reactive circuit. The controller further transfers charge from the second power pack to the first power pack.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 26, 2015
    Assignee: BlackBerry Limited
    Inventor: Wen-Yen Chan
  • Patent number: 8989060
    Abstract: A mobile wireless communications device may include an antenna, a wireless radio frequency (RF) receiver, a wireless RF transmitter, and a duplexer connecting the wireless RF receiver and the wireless RF transmitter to the antenna. More particularly, the wireless RF receiver may include a low noise amplifier (LNA) connected to the duplexer, a first receive signal chain for wireless communications signals having a first signal type downstream from the LNA, a second receive signal chain for wireless communications signals having a second signal type different than the first frequency band downstream from the LNA, and a power divider connecting the LNA to the first and second receive signal chains.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 24, 2015
    Assignee: BlackBerry Limited
    Inventor: Wen-Yen Chan
  • Patent number: 8965321
    Abstract: A stage is provided for a receiver of a wireless device. The stage comprises a matching network that separates amplified signals of interest received from an amplifier from amplified unwanted signals received from the amplifier in conjunction with additional downstream filters. The stage also comprises a signal path that comprises components for receiving and processing the amplified signals of interest, and a shunt path that comprises components for adjusting reflected energy sent back to the amplifier for limiting the output swing of the amplifier in a frequency band corresponding to the amplified unwanted signals.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: February 24, 2015
    Assignee: BlackBerry Limited
    Inventors: Wen-Yen Chan, Nasserullah Khan