Patents by Inventor Yi-Kan Cheng

Yi-Kan Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140298284
    Abstract: Among other things, one or more techniques and/or systems for performing design layout are provided. In an example, a design layout corresponds to a layout of a standard cell whose connectivity is described by a netlist. For example, the netlist specifies net types for respective vias of the standard cell. One or more connectivity rings are formed within the design layout to provide connectivity for one or more vias of the design layout. For example, a first connectivity ring is generated, such as from mandrel, to connect one or more ring one vias. A second connectivity ring is generated, such as from passive pattern, to connect one or more ring two vias. One or more cuts are generated within the design layout to isolate vias having different net types. In this way, the design layout is self-aligned double patterning (SADP) compliant.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Chin-Hsiung Hsu, Huang-Yu Chen, Li-Chun Tien, Lee-Chung Lu, Hui-Zhong Zhuang, Cheng-I Huang, Chung-Hsing Wang, Yi-Kan Cheng
  • Patent number: 8850368
    Abstract: One or more techniques or systems for determining double patterning technology (DPT) layout routing compliance are provided herein. For example, a layout routing component of a system is configured to assign a pin loop value to a pin loop. In some embodiments, the pin loop value is assigned based on a mask assignment of a pin of the pin loop. In some embodiments, the pin loop value is assigned based on a number of nodes associated with the pin loop. DPT compliance or a DPT violation is determined for the pin loop based on the pin loop value. In this manner, odd loop detection associated with DPT layout routing is provided because a DPT violation results in generation of an additional instance of a net, for example. Detecting an odd loop allows a design to be redesigned before fabrication, where the odd loop would present undesired issues.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Huang-Yu Chen, Fang-Yu Fan, Yuan-Te Hou, Wen-Hao Chen, Chung-Hsing Wang, Yi-Kan Cheng
  • Publication number: 20140282308
    Abstract: The present disclosure relates to an apparatus and method to generate a device library, along with layout versus schematic (LVS) and parasitic extraction set-up files for connecting with official tools of a design window supported by a process design kit (PDK). The device library comprises passive devices which can be utilized at any point in an end-to-end design flow from pre-layout verification to post-layout verification of an integrated circuit design. The device library allows for a single schematic view for pre-layout verification but also post-layout verification, thus allowing for pole or pin comparison, and prevents double-counting of parasitic effects from passive design elements by directly instantiating a device from the device library for a verification step. An LVS and parasitic extraction graphical user interface (GUI) allows for incorporation of the generated device library into a pre-existing PDK without any modification to the PDK. Other devices and methods are also disclosed.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Chin-Sheng Chen, Tsun-Yu Yang, Wei-Yi Hu, Tao Wen Chung, Hui Yu Lee, Jui-Feng Kuan, Yi-Kan Cheng
  • Publication number: 20140258962
    Abstract: A method includes generating a three-dimensional table. The table cells of the three-dimensional table comprise normalized parasitic capacitance values selected from the group consisting essentially of normalized poly-to-fin parasitic capacitance values and normalized poly-to-metal-contact parasitic capacitance values of Fin Field-Effect Transistors (FinFETs). The three-dimensional table is indexed by poly-to-metal-contact spacings of the FinFETs, fin-to-fin spacings of the FinFETs, and metal-contact-to-second-poly spacings of the FinFETs. The step of generating the three-dimensional table is performed using a computer.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 11, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ming Ho, Ke-Ying Su, Hsiao-Shu Chao, Yi-Kan Cheng, Ze-Ming Wu, Hsien-Hsin Sean Lee
  • Patent number: 8826213
    Abstract: A method includes generating a three-dimensional table. The table cells of the three-dimensional table comprise normalized parasitic capacitance values selected from the group consisting essentially of normalized poly-to-fin parasitic capacitance values and normalized poly-to-metal-contact parasitic capacitance values of Fin Field-Effect Transistors (FinFETs). The three-dimensional table is indexed by poly-to-metal-contact spacings of the FinFETs, fin-to-fin spacings of the FinFETs, and metal-contact-to-second-poly spacings of the FinFETs. The step of generating the three-dimensional table is performed using a computer.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ming Ho, Ke-Ying Su, Hsiao-Shu Chao, Yi-Kan Cheng, Ze-Ming Wu, Hsien-Hsin Sean Lee
  • Publication number: 20140245251
    Abstract: An embodiment of the present invention is a computer program product for providing an adjusted electronic representation of an integrated circuit layout. The computer program product has a medium with a computer program embodied thereon. Further, the computer program comprises computer program code for providing full node cells from a full node netlist, computer program code for scaling the full node cells to provide shrink node cells, computer program code for providing a timing performance of the full node cells and the shrink node cells, computer program code for comparing the timing performance of the full node cells to the timing performance of the shrink node cells, and computer program code for providing a first netlist.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lee-Chung Lu, Yi-Kan Cheng, Chung-Hsing Wang, Chen-Fu Huang, Hsiao-Shu Chao, Chin-Yu Chiang, Ho Che Yu, Chih Sheng Tsai, Shu Yi Ying
  • Patent number: 8813016
    Abstract: Among other things, one or more techniques and/or systems for performing design layout are provided. In an example, a design layout corresponds to a layout of a standard cell whose connectivity is described by a netlist. For example, the netlist specifies net types for respective vias of the standard cell. One or more connectivity rings are formed within the design layout to provide connectivity for one or more vias of the design layout. For example, a first connectivity ring is generated, such as from mandrel, to connect one or more ring one vias. A second connectivity ring is generated, such as from passive pattern, to connect one or more ring two vias. One or more cuts are generated within the design layout to isolate vias having different net types. In this way, the design layout is self-aligned double patterning (SADP) compliant.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chin-Hsiung Hsu, Huang-Yu Chen, Li-Chun Tien, Lee-Chung Lu, Hui-Zhong Zhuang, Cheng-I Huang, Chung-Hsing Wang, Yi-Kan Cheng
  • Patent number: 8775977
    Abstract: Provided is a system and method for assessing a design layout for a semiconductor device level and for determining and designating different features of the design layout to be formed by different photomasks by decomposing the design layout. The features are designated by markings that associate the various device features with the multiple photomasks upon which they will be formed and then produced on a semiconductor device level using double patterning lithography, DPL, techniques. The markings are done at the device level and are included on the electronic file provided by the design house to the photomask foundry. In addition to overlay and critical dimension considerations for the design layout being decomposed, various other device criteria, design criteria processing criteria and their interrelation are taken into account, as well as device environment and the other device layers, when determining and marking the various device features.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chin-Chang Hsu, Wen-Ju Yang, Hsiao-Shu Chao, Yi-Kan Cheng, Lee-Chung Lu
  • Publication number: 20140189623
    Abstract: A method for circuit design includes a parasitic aware library embedded with one or more parameterized cells. The parasitic aware library is used to insert nets representing some but not all parasitic effects of a circuit into a circuit schematic enabling a single circuit schematic to be used for simulation of the circuit, parasitic verification of the circuit and LVS (Layout Versus Schematic) check. Only the single circuit schematic is required for the circuit design process and to form a mask set. Critical paths of the single circuit schematic are identified and parasitic effects are extracted and inserted into the schematic, enabling a pre-estimation of parasitic verification to be carried out and the LVS check to be carried out using a circuit schematic with some parasitic effects prior to the post-layout simulation in which all parasitic components of the layout are included.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Sheng CHEN, Tsun-Yu YANG, Wei-Yi HU, Tao Wen CHUNG, Jui-Feng KUAN, Yi-Kan CHENG
  • Publication number: 20140189635
    Abstract: A semiconductor device design system comprising at least one processor is configured to define a resistance-capacitance (RC) extraction tool for determining a distance between first and second through-semiconductor-vias extracted from a layout of a semiconductor device. The semiconductor device has a semiconductor substrate and the first and second through-semiconductor-vias in the semiconductor substrate. The semiconductor device design system comprising the at least one processor is also configured to extract parasitic parameters of a coupling in the semiconductor substrate based on the distance determined by the RC extraction tool and a model of the coupling included in a simulation tool.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Shun YANG, Ze-Ming WU, Hsiao-Chu CHAO, Yi-Kan CHENG
  • Patent number: 8756552
    Abstract: Among other things, one or more techniques and/or systems for performing design layout are provided. In an example, a design layout corresponds to a layout of a standard cell whose connectivity is described by a netlist. For example, the netlist specifies net types for respective vias of the standard cell. One or more connectivity rings are formed within the design layout to provide connectivity for one or more vias of the design layout. For example, a first connectivity ring is generated, such as from mandrel, to connect one or more ring one vias. A second connectivity ring is generated, such as from passive pattern, to connect one or more ring two vias. One or more cuts are generated within the design layout to isolate vias having different net types. In this way, the design layout is self-aligned double patterning (SADP) compliant.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chin-Hsiung Hsu, Huang-Yu Chen, Li-Chun Tien, Lee-Chung Lu, Hui-Zhong Zhuang, Cheng-I Huang, Chung-Hsing Wang, Yi-Kan Cheng
  • Patent number: 8751975
    Abstract: A method includes determining model parameters for forming an integrated circuit, and generating a techfile using the model parameters. The techfile includes at least two of a C_worst table, a C_best table, and a C_nominal table. The C_worst table stores greatest parasitic capacitances between layout patterns of the integrated circuit when lithography masks comprising the layout patterns shift relative to each other. The C_best table stores smallest parasitic capacitances between the layout patterns when the lithography masks shift relative to each other. The C_nominal table stores nominal parasitic capacitances between the layout patterns when the lithography masks do not shift relative to each other. The techfile is embodied on a tangible non-transitory storage medium.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ke-Ying Su, Hsiao-Shu Chao, Yi-Kan Cheng
  • Patent number: 8732628
    Abstract: A method comprises: selecting a circuit pattern or network of circuit patterns in a layout of an integrated circuit (IC) to be fabricating using double patterning technology (DPT). Circuit patterns near the selected circuit pattern or network are grouped into one or more groups. For each group, a respective expected resistance-capacitance (RC) extraction error cost is calculated, which is associated with a mask alignment error, for two different sets of mask assignments. The circuit patterns in the one or more groups are assigned to be patterned by respective photomasks, so as to minimize a total of the expected RC extraction error costs.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: May 20, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Fan Wu, I-Fan Lin, Ke-Ying Su, Hsiao-Shu Chao, Yi-Kan Cheng
  • Patent number: 8707230
    Abstract: An integrated circuit (IC) simulation method comprises providing a device process model from a non-transitory machine readable storage medium into a programmed computer. The device process model includes one or more device variables. Each device variable defines a probability distribution of an active-device-level variation of devices in an IC. A conductive line model and/or a multi patterning technology (MPT) model is provided from the storage medium to the computer. The conductive line model includes one or more conductive line variables. Each conductive line variable defines a probability distribution of a conductive-line process-induced variation. The MPT model includes one or more MPT variables. Each MPT variable defines a probability distribution of a mask-misalignment-induced conductive line coupling variation. A Monte Carlo simulation is performed in the computer, including the device process model and the conductive line model or MPT model, to identify parasitic couplings in the IC.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yi Hu, Chin-Cheng Kuo, Cheng-Hung Yeh, Jui-Feng Kuan, Yi-Kan Cheng
  • Patent number: 8707245
    Abstract: In a semiconductor device design method performed by at least one processor, first and second electrical components are extracted from a layout of a semiconductor device. The semiconductor device has a semiconductor substrate and the first and second electrical components in the semiconductor substrate. Parasitic parameters of a coupling in the semiconductor substrate between the first and second electrical components are extracted using a first tool. Intrinsic parameters of the first and second electrical components are extracted using a second tool different from the first tool. The extracted parasitic parameters and intrinsic parameters are combined into a model of the semiconductor device. The parasitic parameters of the coupling are extracted based on a model of the coupling included in the second tool.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Shun Yang, Ze-Ming Wu, Hsiao-Shu Chao, Yi-Kan Cheng
  • Publication number: 20140103545
    Abstract: A method of generating masks for making an integrated circuit includes determining if a coupling capacitance value of a conductive path of a first and second groups of conductive paths of the integrated circuit is greater than a predetermined threshold value. The determination is performed based on at least a resistance-capacitance extraction result of the conductive path and a predetermined level of mask misalignment. The layout patterns are modified to increase an overall vertical distance between the first group of conductive paths and the second group of conductive paths if the coupling capacitance value is greater than the predetermined threshold value.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui Yu LEE, Feng Wei KUO, Jui-Feng KUAN, Yi-Kan CHENG
  • Patent number: 8694938
    Abstract: Among other things, one or more techniques and/or systems are provided for modeling a discrete device as a macro device. That is, the discrete device can comprise one or more parasitic elements, such as parasitic resistances and/or capacitances. Because values of the parasitic elements are unknown during pre-simulation of the discrete device, the discrete device can be modeled as a macro device, which can be used during pre-simulation to take into account the parasitic elements. For example, specified parameters, such as channel length, can be used to obtain a set of RC values that specify predicted values for the one or more parasitic elements of the discrete device. The discrete device can be modeled as the macro device using the set of RC values. In this way, the macro device can be used during pre-simulation to take into account the parasitic effects of parasitic elements of the discrete device.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ching-Shun Yang, Chih Ming Yang, Wei-Yi Hu, Yi-Kan Cheng
  • Patent number: 8671382
    Abstract: A method of generating resistance-capacitance (RC) technology files is disclosed. The method comprises receiving a plurality of metal schemes from an IC foundry and dividing the plurality of metal schemes into one or more modular RC groups. The method further comprises identifying a modular RC structure; calculating capacitance values of the modular RC structure by means of a field solver; calculating an equivalent dielectric constant and an equivalent height of the RC structure based upon a variety of interconnect layers not having interconnects; calculating an equivalent dielectric constant and an equivalent height for each of the plurality of metal schemes; and deriving capacitance values of each of the plurality of metal schemes from the capacitance values of the modular RC structure.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: March 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ke-Ying Su, Hsiao-Shu Chao, Yi-Kan Cheng, Yung-Chin Hou
  • Publication number: 20140068537
    Abstract: A method for analyzing an IC design, comprises: using a computer implemented electronic design automation tool to perform a parasitic RC extraction for a layout of the IC design, the parasitic RC extraction outputting for each of a plurality of routing paths, a nominal capacitive coupling, a minimum capacitive coupling and a maximum capacitive coupling, where the minimum and maximum capacitive couplings correspond to circuit patterning in the presence of double patterning mask misalignments; and performing one of a setup time analysis or a hold time analysis of the IC design using a computer implemented static timing analysis tool. For a given flip-flop having a launch path and a capture path, the setup or hold time analyses is performed using the minimum capacitive coupling for one of the launch and capture paths and the maximum capacitive coupling for the other of the launch and capture paths.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hao CHEN, Yi-Kan CHENG
  • Publication number: 20140059504
    Abstract: A received layout identifies a plurality of circuit components to be included in an integrated circuit (IC) layer for double patterning the layer using two photomasks, the layout including a plurality of first patterns to be included in the first photomask and at least one second pattern to be included in the second photomask. A selected one of the first patterns has first and second endpoints, to be replaced by a replacement pattern connecting the first endpoint to a third endpoint. At least one respective keep-out region is provided adjacent to each respective remaining first pattern except for the selected first pattern. Data are generated representing the replacement pattern, such that no part of the replacement pattern is formed in any of the keep-out regions. Data representing the remaining first patterns and the replacement pattern are output.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huang-Yu CHEN, Yuan-Te HOU, Chung-Min FU, Chung-Hsing WANG, Wen-Hao CHEN, Yi-Kan CHENG