Patents by Inventor Yiming Huai

Yiming Huai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598576
    Abstract: A spin toque transfer magnetic random access memory (STTMRAM) element comprises a reference layer, formed on a substrate, with a fixed perpendicular magnetic component. A junction layer is formed on top of the reference layer and a free layer is formed on top of the junction layer with a perpendicular magnetic orientation, at substantially its center of the free layer and switchable. A spacer layer is formed on top of the free layer and a fixed layer is formed on top of the spacer layer, the fixed layer has a fixed perpendicular magnetic component opposite to that of the reference layer. The magnetic orientation of the free layer switches relative to that of the fixed layer. The perpendicular magnetic components of the fixed layer and the reference layer substantially cancel each other and the free layer has an in-plane edge magnetization field.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 3, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Rajiv Yadav Ranjan
  • Publication number: 20130314982
    Abstract: A testing method is described that applies a sequence external magnetic fields of varying strength to MRAM cells (such as those with MTJ memory elements) in chips or wafers to selectively screen out cells with low or high thermal stability factor. The coercivity (Hc) is used as a proxy for thermal stability factor (delta). In the various embodiments the sequence, direction and strength of the external magnetic fields is used to determine the high coercivity cells that are not switched by a normal field and the low coercivity cells that are switched by a selected low field. In some embodiments the MRAM's standard internal electric current can be used to switch the cells. Standard circuit-based resistance read operations can be used to determine the response of each cell to these magnetic fields and identify the abnormal high and low coercivity cells.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: Avalanche Technology Inc.
    Inventors: Yuchen Zhou, Ebrahim Abedifard, Yiming Huai
  • Publication number: 20130294144
    Abstract: A testing method is described for performing a fast bit-error rate (BER) measurement on resistance-based RAM cells, such MTJ cells, at the wafer or chip level. Embodiments use one or more specially designed test memory cells fabricated with direct electrical connections between the two electrodes of the cell and external contact pads (or points) on the surface of the wafer (or chip). In the test setup the memory cell is connected an impedance mismatched transmission line through a probe for un-buffered, fast switching of the cell between the high and low resistance states without the need for CMOS logic to select and drive the cell. The unbalanced transmission line is used generate signal reflections from the cell that are a function of the resistance state. The reflected signal is used to detect whether the test cell has switched as expected.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Inventors: Zihui Wang, Yuchen Zhou, Jing Zhang, Yiming Huai
  • Publication number: 20130292785
    Abstract: A magnetic random access memory (MRAM) element is configured to store a state when electric current flows therethrough. The MRAM element includes a first magnetic tunnel junction (MTJ) for storing a data bit and a reference bit MTJ for storing a reference bit. The data bit MTJ and reference bit MTJ are preferred to be of identical structure that includes a magnetic free layer (FL) having a switchable magnetization with a direction that is perpendicular to a film plane. The direction of magnetization of the FL is determinative of the data bit stored in the at least one MTJ. The identical structure further includes a magnetic reference layer (RL) having a magnetization with a direction that is perpendicular to the film plane, and a magnetic pinned layer (PL) having a magnetization with a direction that is perpendicular to the film plane.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventors: Yuchen Zhou, Yiming Huai
  • Patent number: 8575584
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same.
    Type: Grant
    Filed: September 3, 2011
    Date of Patent: November 5, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Patent number: 8574928
    Abstract: Fabrication methods for MRAM are described wherein any re-deposited metal on the sidewalls of the memory element pillars is cleaned before the interconnection process is begun. In embodiments the pillars are first fabricated, then a dielectric material is deposited on the pillars over the re-deposited metal on the sidewalls. The dielectric material substantially covers any exposed metal and therefore reduces sources of re-deposition during subsequent etching. Etching is then performed to remove the dielectric material from the top electrode and the sidewalls of the pillars down to at least the bottom edge of the barrier. The result is that the previously re-deposited metal that could result in an electrical short on the sidewalls of the barrier is removed. Various embodiments of the invention include ways of enhancing or optimizing the process. The bitline interconnection process proceeds after the sidewalls have been etched clean as described.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: November 5, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Yuchen Zhou, Jing Zhang, Dong Ha Jung, Ebrahim Abedifard, Rajiv Yadav Ranjan, Parviz Keshtbod
  • Publication number: 20130286723
    Abstract: A spin toque transfer magnetic random access memory (STTMRAM) element comprises a reference layer, which can be a single layer structure or a synthetic multi-layer structure, formed on a substrate, with a fixed perpendicular magnetic component. A junction layer is formed on top of the reference layer and a free layer is formed on top of the junction layer with a perpendicular magnetic orientation, at substantially its center of the free layer and switchable. A spacer layer is formed on top of the free layer and a fixed layer is formed on top of the spacer layer, the fixed layer has a fixed perpendicular magnetic component opposite to that of the reference layer. The magnetic orientation of the free layer switches relative to that of the fixed layer. The perpendicular magnetic components of the fixed layer and the reference layer substantially cancel each other and the free layer has an in-plane edge magnetization field.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 31, 2013
    Inventors: Yuchen Zhou, Yiming Huai, Rajiv Yadav Ranjan, Jing Zhang
  • Patent number: 8565010
    Abstract: A spin toque transfer magnetic random access memory (STTMRAM) element comprises a reference layer formed on a substrate, with a fixed perpendicular magnetic component. A junction layer is formed on top of the reference layer and a free layer is formed on top of the junction layer with a perpendicular magnetic orientation, at substantially its center of the free layer and switchable. A spacer layer is formed on top of the free layer and a fixed layer is formed on top of the spacer layer, the fixed layer has a fixed perpendicular magnetic component opposite to that of the reference layer. The magnetic orientation of the free layer switches relative to that of the fixed layer. The perpendicular magnetic components of the fixed layer and the reference layer substantially cancel each other and the free layer has an in-plane edge magnetization field.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 22, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Rajiv Yadav Ranjan, Jing Zhang
  • Patent number: 8559215
    Abstract: A magnetic random access memory (MRAM) element is configured to store a state when electric current flows and includes a first magnetic tunnel junction (MTJ) for storing a data bit and a second MTJ for storing a reference bit. The direction of magnetization of the FL is determinative of the data bit stored in the at least one MTJ. Further, the MTJ includes a magnetic reference layer (RL) having a magnetization with a direction that is perpendicular to the film plane, and a magnetic pinned layer (PL) having a magnetization with a direction that is perpendicular to the film plane. The direction of magnetization of the RL and the PL are anti-parallel relative to each other in the first MTJ. The direction of magnetization of the FL, the RL and the PL are parallel relative to each other in the second MTJ.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 15, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai
  • Publication number: 20130267042
    Abstract: Fabrication methods for MRAM are described wherein any re-deposited metal on the sidewalls of the memory element pillars is cleaned before the interconnection process is begun. In embodiments the pillars are first fabricated, then a dielectric material is deposited on the pillars over the re-deposited metal on the sidewalls. The dielectric material substantially covers any exposed metal and therefore reduces sources of re-deposition during subsequent etching. Etching is then performed to remove the dielectric material from the top electrode and the sidewalls of the pillars down to at least the bottom edge of the barrier. The result is that the previously re-deposited metal that could result in an electrical short on the sidewalls of the barrier is removed. Various embodiments of the invention include ways of enhancing or optimizing the process. The bitline interconnection process proceeds after the sidewalls have been etched clean as described.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Yuchen Zhou, Jing Zhang, Dong Ha Jung, Ebrahim Abedifard, Rajiv Yadav Ranjan, Parviz Keshtbod
  • Patent number: 8553452
    Abstract: A testing method is described that applies a sequence external magnetic fields of varying strength to MRAM cells (such as those with MTJ memory elements) in chips or wafers to selectively screen out cells with low or high thermal stability factor. The coercivity (Hc) is used as a proxy for thermal stability factor (delta). In the various embodiments the sequence, direction and strength of the external magnetic fields is used to determine the high coercivity cells that are not switched by a normal field and the low coercivity cells that are switched by a selected low field. In some embodiment the MRAM's standard internal electric current can be used to switch the cells. Standard circuit-based resistance read operations can be used to determine the response of each cell to these magnetic fields and identify the abnormal high and low coercivity cells.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 8, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Yuchen Zhou, Ebrahim Abedifard, Yiming Huai
  • Patent number: 8546151
    Abstract: Disclosed is a method for manufacturing a magnetic storage device comprising a TMR element, which comprises a step for forming an insulting film on an interlayer insulating film provided with a wiring layer, an opening formation step for forming an opening in the insulating film so that the wiring layer is exposed therefrom, a metal layer formation step for forming a metal layer on the insulating layer so that the opening is filled therewith, a CMP step for polishing and removing the metal layer on the insulating layer by a CMP method and forming the metal layer remaining in the opening into a lower electrode, and a step for forming a TMR element on the lower electrode.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Haruo Furuta, Shuichi Ueno, Ryoji Matsuda, Tatsuya Fukumura, Takeharu Kuroiwa, Lien-Chang Wang, Eugene Chen, Yiming Huai
  • Patent number: 8536063
    Abstract: Various embodiments of the invention relate to etching processes used in fabrication of MTJ cells in an MRAM device. The various embodiments can be used in combination with each other. The first embodiment adds a hard mask buffer layer between a hard mask and a top electrode. The second embodiment uses a multilayered etching hard mask. The third embodiment uses a multilayered top electrode structure including a first Cu layer under a second layer such as Ta. The fourth embodiment is a two-phase etching process used for the bottom electrode to remove re-deposited material while maintaining a more vertical sidewall etching profile. In the first phase the bottom electrode layer is removed using carbonaceous reactive ion etching until the endpoint. In the second phase an inert gas and/or oxygen plasma is used to remove the polymer that was deposited during the previous etching processes.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 17, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Parviz Keshtbod, Roger K. Malmhall
  • Patent number: 8519496
    Abstract: A spin-transfer torque magnetic random access memory (STTMRAM) element is configured to store a state when electrical current is applied thereto. The STTMRAM element includes first and second free layers, each of which having an associated direction of magnetization defining the state of the STTMRAM element. Prior to the application of electrical current to the STTMRAM element, the direction of the magnetization of the first and second free layers each is in-plane and after the application of electrical current to the STTMRAM element, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 27, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Publication number: 20130215672
    Abstract: A magnetoresistive logic cell (MRLC) is described that includes two MTJs in series that share a common free layer (CFL). The relative magnetization orientations of the CFL and the switchable reference layer (SRL) in MTJ-1 dominate the overall resistance of the MRLC without regard to the fixed magnetization orientation of the nonswitchable reference layer in MTJ-2. The high resistance state of the MRLC occurs when the switchable reference and common free layers have opposite magnetization orientations. The low resistance state occurs when the orientations are the same. This behavior allows the MRLC to be used as a logical comparator. The CFL is switched by STT effect by application of selected relatively short voltage pulses that do not switch the SRL. The SRL is switched with reference to the CFL by a voltage effect generated by a selected longer voltage pulse that does not switch the CFL.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Inventors: Yuchen Zhou, Zihui Wang, Yiming Huai, Yadav Ranjan, Roger K. Malmhall
  • Publication number: 20130194863
    Abstract: Methods using a sequence of externally generated magnetic fields to initialize the magnetization directions of each of the layers in perpendicular MTJ MRAM elements for data and reference bits when the required magnetization directions are anti-parallel are described. The coercivity of the fixed pinned and reference layers can be made unequal so that one of them can be switched by a magnetic field that will reliably leave the other one unswitched. Embodiments of the invention utilize the different effective coercivity fields of the pinned, reference and free layers to selectively switch the magnetization directions using a sequence of magnetic fields of decreasing strength. Optionally the chip or wafer can be heated to reduce the required field magnitude. It is possible that the first magnetic field in the sequence can be applied during an annealing step in the MRAM manufacture process.
    Type: Application
    Filed: July 11, 2012
    Publication date: August 1, 2013
    Inventors: Yuchen Zhou, Yiming Huai
  • Patent number: 8492860
    Abstract: A STTMRAM element includes a magnetization layer made of a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL), with the first and second free layers each having in-plane magnetizations that act on each other through anti-parallel coupling. The direction of the magnetization of the first and second free layers each is in-plane prior to the application of electrical current to the STTMRAM element and thereafter, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued to the STTMRAM element, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: July 23, 2013
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8476723
    Abstract: A magnetic device including a magnetic element is described. The magnetic element includes a fixed layer having a fixed layer magnetization, a spacer layer that is nonmagnetic, and a free layer having a free layer magnetization. The free layer is changeable due to spin transfer when a write current above a threshold is passed through the first free layer. The free layer is includes low saturation magnetization materials.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 2, 2013
    Assignees: Grandis, Inc., Renesas Electronics Corporation
    Inventors: Hide Nagai, Zhitao Diao, Yiming Huai
  • Publication number: 20130148417
    Abstract: A testing method is described that applies a sequence external magnetic fields of varying strength to MRAM cells (such as those with MTJ memory elements) in chips or wafers to selectively screen out cells with low or high thermal stability factor. The coercivity (Hc) is used as a proxy for thermal stability factor (delta). In the various embodiments the sequence, direction and strength of the external magnetic fields is used to determine the high coercivity cells that are not switched by a normal field and the low coercivity cells that are switched by a selected low field. In some embodiment the MRAM's standard internal electric current can be used to switch the cells. Standard circuit-based resistance read operations can be used to determine the response of each cell to these magnetic fields and identify the abnormal high and low coercivity cells.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Inventors: Yuchen Zhou, Ebrahim Abedifard, Yiming Huai
  • Publication number: 20130126819
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same. A memory device comprises a semiconductor substrate having a first type conductivity and a plurality of parallel trenches therein; a plurality of parallel common source lines having a second type conductivity opposite to the first type conductivity formed in the trench bottoms; a plurality of parallel gate electrodes formed on the trench sidewalls with a gate dielectric layer interposed therebetween, the gate electrodes being lower in height than the trench sidewalls; and a plurality of drain regions having the second type conductivity formed in top regions of the trench sidewalls, at least two of the drain regions being formed in each of the trench sidewalls and sharing a respective common channel formed in the each of the trench sidewalls and a respective one of the source lines.
    Type: Application
    Filed: April 4, 2012
    Publication date: May 23, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang