Patents by Inventor Yiming Huai

Yiming Huai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8890108
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same. A memory device comprises a semiconductor substrate having a first type conductivity and a plurality of parallel trenches therein; a plurality of parallel common source lines having a second type conductivity opposite to the first type conductivity formed in the trench bottoms; a plurality of parallel gate electrodes formed on the trench sidewalls with a gate dielectric layer interposed therebetween, the gate electrodes being lower in height than the trench sidewalls; and a plurality of drain regions having the second type conductivity formed in top regions of the trench sidewalls, at least two of the drain regions being formed in each of the trench sidewalls and sharing a respective common channel formed in the each of the trench sidewalls and a respective one of the source lines.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 18, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Patent number: 8885395
    Abstract: A magnetoresistive logic cell (MRLC) is described that includes two MTJs in series that share a common free layer (CFL). The relative magnetization orientations of the CFL and the switchable reference layer (SRL) in MTJ-1 dominate the overall resistance of the MRLC without regard to the fixed magnetization orientation of the nonswitchable reference layer in MTJ-2. The high resistance state of the MRLC occurs when the switchable reference and common free layers have opposite magnetization orientations. The low resistance state occurs when the orientations are the same. This behavior allows the MRLC to be used as a logical comparator. The CFL is switched by STT effect by application of selected relatively short voltage pulses that do not switch the SRL. The SRL is switched with reference to the CFL by a voltage effect generated by a selected longer voltage pulse that does not switch the CFL.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: November 11, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Zihui Wang, Yiming Huai, Rajiv Yadav Ranjan, Roger K. Malmhall
  • Patent number: 8883520
    Abstract: Methods and structures are described to reduce metallic redeposition material in the memory cells, such as MTJ cells, during pillar etching. One embodiment forms metal studs on top of the landing pads in a dielectric layer that otherwise covers the exposed metal surfaces on the wafer. Another embodiment patterns the MTJ and bottom electrode separately. The bottom electrode mask then covers metal under the bottom electrode. Another embodiment divides the pillar etching process into two phases. The first phase etches down to the lower magnetic layer, then the sidewalls of the barrier layer are covered with a dielectric material which is then vertically etched. The second phase of the etching then patterns the remaining layers. Another embodiment uses a hard mask above the top electrode to etch the MTJ pillar until near the end point of the bottom electrode, deposits a dielectric, then vertically etches the remaining bottom electrode.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: November 11, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Kimihiro Satoh, Dong Ha Jung, Ebrahim Abedifard, Parviz Keshtbod, Yiming Huai, Jing Zhang
  • Publication number: 20140328117
    Abstract: A method of initializing a magnetic random access memory (MRAM) element that is configured to store a state when electric current flows therethrough is disclosed. The MRAM element includes a first magnetic tunnel junction (MTJ) for storing a data bit and a second MTJ for storing a reference bit. Each MTJ further includes a magnetic reference layer (RL) having a magnetization with a direction that is perpendicular to the film plane, and a magnetic pinned layer (PL) having a magnetization with a direction that is perpendicular to the film plane. The direction of magnetization of the RL and the PL are anti-parallel relative to each other in the first MTJ. The direction of magnetization of the FL, the RL and the PL are parallel relative to each other in the second MTJ for storing reference bit.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Inventors: Yuchen Zhou, Yiming Huai
  • Patent number: 8878156
    Abstract: A memory device comprises a semiconductor substrate having a plurality of parallel trenches therein, a memory region formed in the substrate including an array of memory cells having a plurality of vertical selection transistors with respective channels formed in trench sidewalls, a plurality of buried source electrodes in trench bottoms, a plurality of paired gate electrodes formed on paired trench sidewalls, a first and second stitch region disposed adjacent the memory region along a trench direction including a first and second row of gate contacts, respectively, and a row of source contacts disposed in the first or second stitch region with each of the source contacts coupled to a respective one of the source electrodes. One of each pair of the gate electrodes is coupled to a respective one of the first row of gate contacts and the other one of each pair of gate electrodes is coupled to a respective one of the second row of gate contacts.
    Type: Grant
    Filed: November 17, 2012
    Date of Patent: November 4, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai
  • Patent number: 8860158
    Abstract: A STTMRAM element includes a magnetization layer made of a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL), with the first and second free layers each having in-plane magnetizations that act on each other through anti-parallel coupling. The direction of the magnetization of the first and second free layers each is in-plane prior to the application of electrical current to the STTMRAM element and thereafter, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued to the STTMRAM element, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: October 14, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8836061
    Abstract: A spin transfer torque magnetic random access memory (STTMRAM) magnetic tunnel junction (MTJ) stack includes layers to which when electric current is applied cause switching of the direction of magnetization of at least one of the layer. The STTMRAM MTJ stack includes a reference layer (RL) with a direction of magnetization that is fixed upon manufacturing of the STTMRAM MTJ stack, a junction layer (JL) formed on top of the RL, a free layer (FL) formed on top of the JL. The FL has a direction of magnetization that is switchable relative to that of the RL upon the flow of electric current through the spin transfer torque magnetic random access memory (STTMRAM) magnetic tunnel junction (MTJ) stack. The STTMRAM MTJ stack further includes a spin confinement layer (SCL) formed on top of the FL, the SCL made of ruthenium.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: September 16, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Zihui Wang, Dong Ha Jung
  • Publication number: 20140252356
    Abstract: Methods for testing magnetoresistance of test devices with layer stacks, such as MTJs, fabricated on a wafer are described. The test devices can be fabricated along with arrays of similarly structured memory cells on a production wafer to allow in-process testing. The test devices with contact pads at opposite ends of the bottom electrode allow resistance across the bottom electrode to be measured as a surrogate for measuring resistance between the top and bottom electrodes. An MTJ test device according to the invention has a measurable magnetoresistance (MR) between the two contact pads that is a function of the magnetic orientation of the free layer and varies with the length and width of the MTJ strip in each test device. The set of test MTJs can include a selected range of lengths to allow the tunnel magnetoresistance (TMR) and resistance area product (RA) to be estimated or predicted.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Applicant: Avalanche Technology Inc.
    Inventors: Zihui Wang, Yuchen Zhou, Yiming Huai
  • Patent number: 8830736
    Abstract: A method of initializing a magnetic random access memory (MRAM) element that is configured to store a state when electric current flows therethrough is disclosed. The MRAM element includes a first magnetic tunnel junction (MTJ) for storing a data bit and a second MTJ for storing a reference bit. The direction of magnetization of the FL is determinative of the data bit stored in the at least one MTJ and each MTJ further includes a magnetic reference layer (RL) having a magnetization with a direction that is perpendicular to the film plane, and a magnetic pinned layer (PL) having a magnetization with a direction that is perpendicular to the film plane. The direction of magnetization of the RL and the PL are anti-parallel relative to each other in the first MTJ. The direction of magnetization of the FL, the RL and the PL are parallel relative to each other in the second MTJ for storing reference bit.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai
  • Publication number: 20140248719
    Abstract: The present invention is directed to a method for manufacturing spin transfer torque magnetic random access memory (STTMRAM) devices. The method, which utilizes in-situ annealing and etch-back of the magnetic tunnel junction (MTJ) film stack, comprises the steps of depositing a barrier layer on top of a bottom magnetic layer and then depositing an interface magnetic layer on top of the barrier layer to form an MTJ film stack; annealing the MTJ film stack at a first temperature and then cool the MTJ film stack to a second temperature lower than the first temperature; etching away a top portion of the interface magnetic layer; and depositing at least one top layer on top of the etched interface magnetic layer. The method may further include the step of annealing the MTJ film stack at a third temperature between the first and second temperature after the step of depositing at least one top layer.
    Type: Application
    Filed: May 8, 2014
    Publication date: September 4, 2014
    Applicant: Avalanche Technology Inc.
    Inventors: Yuchen Zhou, Yiming Huai
  • Publication number: 20140247653
    Abstract: The present invention is directed to a spin transfer torque magnetic random access memory (STT-MRAM) device having a plurality of memory elements. Each of the plurality of memory elements comprises a magnetic reference layer with a first invariable magnetization direction substantially perpendicular to layer plane thereof; a magnetic free layer separated from the magnetic reference layer by an insulating tunnel junction layer with the magnetic free layer having a variable magnetization direction substantially perpendicular to layer plane thereof; a dielectric layer formed in contact with the magnetic free layer opposite the insulating tunnel junction layer; and a first conductive layer formed in contact with the dielectric layer opposite the magnetic free layer.
    Type: Application
    Filed: January 28, 2014
    Publication date: September 4, 2014
    Applicant: Avalanche Technology Inc.
    Inventors: Zihui Wang, Yuchen Zhou, Yiming Huai
  • Patent number: 8806284
    Abstract: A testing method is described for performing a fast bit-error rate (BER) measurement on resistance-based RAM cells, such MTJ cells, at the wafer or chip level. Embodiments use one or more specially designed test memory cells fabricated with direct electrical connections between the two electrodes of the cell and external contact pads (or points) on the surface of the wafer (or chip). In the test setup the memory cell is connected an impedance mismatched transmission line through a probe for un-buffered, fast switching of the cell between the high and low resistance states without the need for CMOS logic to select and drive the cell. The unbalanced transmission line is used generate signal reflections from the cell that are a function of the resistance state. The reflected signal is used to detect whether the test cell has switched as expected.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 12, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Zihui Wang, Yuchen Zhou, Jing Zhang, Yiming Huai
  • Patent number: 8796795
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 5, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Ebrahim Abedifard
  • Publication number: 20140210103
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 31, 2014
    Applicant: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Ebrahim Abedifard
  • Publication number: 20140197505
    Abstract: Chip packages are described with soft-magnetic shields that are included inside or attached externally to the package containing a MRAM chip. In one group of embodiments a single shield with vias for bonding wires is affixed to the surface of the MRAM chip having the contact pads. The limitation of shield to chip distance due to bonding wire is eliminated by VIA holes according to the invention which achieves minimal spacing between the shield and chip. A second shield without vias can be positioned on the opposite side of the chip from the first shield. In one group of embodiments a hardened ferro-fluid shield can be the only shield or the structure can include a shield with or without vias. One group of embodiments includes an external shield with vias for solder access to the package contact pads affixed to the outer surface of the package.
    Type: Application
    Filed: January 12, 2013
    Publication date: July 17, 2014
    Applicant: AVALANCHE TECHNOLOGY INC.
    Inventors: Yuchen Zhou, Bernardo Sardinha, Rajiv Yadav Ranjan, Ebrahim Abedifard, Roger Klas Malmhall, Zihui Wang, Yiming Huai, Jing Zhang
  • Patent number: 8779537
    Abstract: A spin transfer torque memory random access memory (STTMRAM) element is capable of switching states when electrical current is applied thereto for storing data and includes the following layers. An anti-ferromagnetic layer, a fixed layer formed on top of the anti-ferromagnetic layer, a barrier layer formed on top of the second magnetic layer of the fixed layer, and a free layer including a first magnetic layer formed on top of the barrier layer, a second magnetic layer formed on top of the first magnetic layer, a nonmagnetic insulating layer formed on top of the second magnetic layer and a third magnetic layer formed on top of the non-magnetic insulating layer. A capping layer is formed on top of the non-magnetic insulating layer.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: July 15, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yiming Huai, Rajiv Yadav Ranjan, Roger Klas Malmhall, Yuchen Zhou
  • Patent number: 8772888
    Abstract: Use of a multilayer etching mask that includes a stud mask and a removable spacer sleeve for MTJ etching to form a bottom electrode that is wider than the rest of the MTJ pillar is described. The first embodiment of the invention described includes a top electrode and a stud mask. In the second and third embodiments the stud mask is a conductive material and also serves as the top electrode. In embodiments after the stud mask is formed a spacer sleeve is formed around it to initially increase the masking width for a phase of etching. The spacer is removed for further etching, to create step structures that are progressively transferred down into the layers forming the MTJ pillar. In one embodiment the spacer sleeve is formed by net polymer deposition during an etching phase.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Dong Ha Jung, Kimihiro Satoh, Jing Zhang, Yuchen Zhou, Yiming Huai
  • Patent number: 8772886
    Abstract: A spin transfer torque memory random access memory (STTMRAM) element is capable of switching states when electrical current is applied thereto for storing data and includes the following layers. An anti-ferromagnetic layer, a fixed layer formed on top of the anti-ferromagnetic layer, a barrier layer formed on top of the second magnetic layer of the fixed layer, and a free layer including a first magnetic layer formed on top of the barrier layer, a second magnetic layer formed on top of the first magnetic layer, a non-magnetic insulating layer formed on top of the second magnetic layer and a third magnetic layer formed on top of the non-magnetic insulating layer. A capping layer is formed on top of the non-magnetic insulating layer.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 8, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yiming Huai, Rajiv Yadav Ranjan, Ioan Tudosa, Roger Klas Malmhall, Yuchen Zhou
  • Publication number: 20140183608
    Abstract: The present invention is directed to a spin transfer torque (STT) MRAM device having a perpendicular magnetic tunnel junction (MTJ) memory element. The memory element includes a perpendicular MTJ structure in between a non-magnetic seed layer and a non-magnetic cap layer. The MTJ structure comprises a magnetic free layer structure and a magnetic reference layer structure with an insulating tunnel junction layer interposed therebetween, an anti-ferromagnetic coupling layer formed adjacent to the magnetic reference layer structure, and a magnetic fixed layer formed adjacent to the anti-ferromagnetic coupling layer. At least one of the magnetic free and reference layer structures includes a non-magnetic perpendicular enhancement layer, which improves the perpendicular anisotropy of magnetic layers adjacent thereto.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Avalanche Technology Inc.
    Inventors: Huadong Gan, Yiming Huai, Xiaobin Wang, Yuchen Zhou, Zihui Wang
  • Patent number: 8758850
    Abstract: A spin transfer torque magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B), annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer, the annealing causing a second free sub-layer to be formed on top of the first free sub-layer and being made partially of B, the amount of B of the second free sub-layer being greater than the amount of B in the first free sub-layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 24, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai