Patents by Inventor Yin Qian

Yin Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8492865
    Abstract: An image sensor array includes a substrate layer, a metal layer, an epitaxial layer, a plurality of imaging pixels, and a contact dummy pixel. The metal layer is disposed above the substrate layer. The epitaxial layer is disposed between the substrate layer and the metal layer. The imaging pixels are disposed within the epitaxial layer and each include a photosensitive element for collecting an image signal. The contact dummy pixel is dispose within the epitaxial layer and includes an electrical conducting path through the epitaxial layer. The electrical conducting path couples to the metal layer above the epitaxial layer.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Duli Mao, Hsin-Chih Tai, Yin Qian, Howard E. Rhodes
  • Patent number: 8466010
    Abstract: A backside illuminated imaging sensor with a seal ring support includes an epitaxial layer having an imaging array formed in a front side of the epitaxial layer. A metal stack is coupled to the front side of the epitaxial layer, wherein the metal stack includes a seal ring formed in an edge region of the imaging sensor. An opening is included that extends from the back side of the epitaxial layer to a metal pad of the seal ring to expose the metal pad. The seal ring support is disposed on the metal pad and within the opening to structurally support the seal ring.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: June 18, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Vincent Venezia, Yin Qian, Duli Mao, Keh-Chiang Ku
  • Publication number: 20130113065
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Yin Qian, Hsin-Chih Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Patent number: 8431429
    Abstract: A method of fabricating a backside illuminated imaging sensor that includes a device layer, a metal stack, and an opening is disclosed. The device layer has an imaging array formed in a front side of the device layer, where the imaging array is adapted to receive light from a back side of the device layer. The metal stack is coupled to the front side of the device layer and includes at least one metal interconnect layer having a metal pad. The opening extends from the back side of the device layer to the metal pad to expose the metal pad for wire bonding. The method includes depositing a film on the back side of the device layer and within the opening, then etching the film to form a frame within the opening to structurally reinforce the metal pad.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 30, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Duli Mao, Vincent Venezia, Yin Qian
  • Publication number: 20130092982
    Abstract: Embodiments of an image sensor pixel that includes a photosensitive element, a floating diffusion region, and a transfer device. The photosensitive element is disposed in a substrate layer for accumulating an image charge in response to light. The floating diffusion region is dispose in the substrate layer to receive the image charge from the photosensitive element. The transfer device is disposed between the photosensitive element and the floating diffusion region to selectively transfer the image charge from the photosensitive element to the floating diffusion region. The transfer device includes a buried channel device including a buried channel gate disposed over a buried channel dopant region. The transfer device also includes a surface channel device including a surface channel gate disposed over a surface channel region. The surface channel device is in series with the buried channel device. The surface channel gate has the opposite polarity of the buried channel gate.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Gang Chen, Sing-Chung Hu, Hsin-Chih Tai, Duli Mao, Manoj Bikumandla, Wei Zheng, Yin Qian, Zhibin Xiong, Vincent Venezia, Keh-Chiang Ku, Howard E. Rhodes
  • Patent number: 8405748
    Abstract: Embodiments of an apparatus comprising a pixel array comprising a plurality of macropixels. Each macropixel includes a pair of first pixels each including a color filter for a first color, the first color being one to which pixels are most sensitive, a second pixel including a color filter for a second color, the second color being one to which the pixels are least sensitive and a third pixel including a color filter for a third color, the third color being one to which pixels have a sensitivity between the least sensitive and the most sensitive, wherein the first pixels each occupy a greater proportion of the light-collection area of the macropixel than either the second pixel or the third pixel. Corresponding process and system embodiments are disclosed and claimed.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: March 26, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Patent number: 8373243
    Abstract: A backside illuminated imaging sensor with a seal ring support includes an epitaxial layer having an imaging array formed in a front side of the epitaxial layer. A metal stack is coupled to the front side of the epitaxial layer, wherein the metal stack includes a seal ring formed in an edge region of the imaging sensor. An opening is included that extends from the back side of the epitaxial layer to a metal pad of the seal ring to expose the metal pad. The seal ring support is disposed on the metal pad and within the opening to structurally support the seal ring.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: February 12, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Vincent Venezia, Yin Qian, Duli Mao, Keh-Chiang Ku
  • Patent number: 8357984
    Abstract: An array of pixels is formed using a substrate, where each pixel has a substrate having a backside and a frontside that includes metalization layers, a photodiode formed in the substrate, frontside P-wells formed using frontside processing that are adjacent to the photosensitive region, and an N-type region formed in the substrate below the photodiode. The N-type region is formed in a region of the substrate below the photodiode and is formed at least in part in a region of the substrate that is deeper than the depth of the frontside P-wells.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 22, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Sohei Manabe, Vincent Venezia, Hsin-Chih Tai, Hidetoshi Nozaki, Yin Qian, Howard E. Rhodes
  • Publication number: 20130001661
    Abstract: Embodiments of a process for forming a photodetector region in a CMOS pixel by dopant implantation, the process comprising masking a photodetector area of a surface of a substrate for formation of the photodetector region, positioning the substrate at a plurality of twist angles, and at each of the plurality of twist angles, directing dopants at the photodetector area at a selected tilt angle. Embodiments of a CMOS pixel comprising a photodetector region formed in a substrate, the photodetector region comprising overlapping first and second dopant implants, wherein the overlap region has a different dopant concentration than the non-overlapping parts of the first and second implants, a floating diffusion formed in the substrate, and a transfer gate formed on the substrate between the photodetector and the transfer gate. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Patent number: 8345132
    Abstract: A color image sensor is disclosed. The color image sensor includes a pixel array including a color filter array (“CFA”) overlaying an array of photo-sensors for acquiring a color image. The CFA includes first color filter elements of a first color overlaying a first group of the photo-sensors and second color filter elements of a second color overlaying a second group of the photo-sensors. The first color filter elements contribute to a first color channel of the color image and the second color filter elements contribute to a second color channel of the color image. The color image sensor further includes a color combiner unit coupled to combine the first color channel with the second color channel to generate a third color channel of the color image based on the first and second color channels. An output port is coupled to the pixel array to output the color image having three color channels including the first, second, and third color channels.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: January 1, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Yin Qian, Duli Mao, Vincent Venezia
  • Patent number: 8338856
    Abstract: A backside illuminated (“BSI”) complementary metal-oxide semiconductor (“CMOS”) image sensor includes a photosensitive region disposed within a semiconductor layer and a stress adjusting layer. The photosensitive region is sensitive to light incident on a backside of the BSI CMOS image sensor to collect an image charge. The stress adjusting layer is disposed on a backside of the semiconductor layer to establish a stress characteristic that encourages photo-generated charge carriers to migrate towards the photosensitive region.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 25, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Wei Zheng, Vincent Venezia, Yin Qian, Duli Mao
  • Publication number: 20120319242
    Abstract: Forming a doped isolation region in a substrate during manufacture of an image sensor. A method of an aspect includes forming a hardmask layer over the substrate, and forming a photoresist layer over the hardmask layer. An opening is formed in the photoresist layer over an intended location of the doped isolation region. An opening is etched in the hardmask layer by exposing the hardmask layer to one or more etchants through the opening. The opening in the hardmask layer may have a width of less than 0.4 micrometers. The doped isolation region may be formed in the substrate beneath the opening in the hardmask layer by performing a dopant implantation that introduces dopant through the opening in the hardmask layer. The method of an aspect may include forming sidewall spacers on sidewalls of the opening in the hardmask layer and using the sidewall spacers as a dopant implantation mask.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Keh-Chiang Ku, Yin Qian, Gang Chen, Rongsheng Yang, Howard Rhodes
  • Patent number: 8330195
    Abstract: An image sensor pixel includes a substrate, a first epitaxial layer, a collector layer, a second epitaxial layer and a light collection region. The substrate is doped to have a first conductivity type. The first epitaxial layer is disposed over the substrate and doped to have the first conductivity type as well. The collector layer is selectively disposed over at least a portion of the first epitaxial layer and doped to have a second conductivity type. The second epitaxial layer is disposed over the collector layer and doped to have the first conductivity type. The light collection region collects photo-generated charge carriers and is disposed within the second epitaxial layer. The light collection region is also doped to have the second conductivity type.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 11, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Ashish Shah, Rongsheng Yang, Duli Mao, Yin Qian, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 8329497
    Abstract: A backside illuminated imaging sensor includes a semiconductor layer and an infrared detecting layer. The semiconductor layer has a front surface and a back surface. An imaging pixel includes a photodiode region formed within the semiconductor layer. The infrared detecting layer is disposed above the front surface of the semiconductor layer to receive infrared light that propagates through the imaging sensor from the back surface of the semiconductor layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 11, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Howard E. Rhodes, Hsin-Chih Tai, Vincent Venezia, Duli Mao
  • Publication number: 20120302000
    Abstract: A technique for fabricating an image sensor including a pixel circuitry region and a peripheral circuitry region includes fabricating front side components on a front side of the image sensor. A dopant layer is implanted on a backside of the image sensor. A anti-reflection layer is formed on the backside and covers a first portion of the dopant layer under the pixel circuitry region while exposing a second portion of the dopant layer under the peripheral circuitry region. The first portion of the dopant layer is laser annealed from the backside of the image sensor through the anti-reflection layer. The anti-reflection layer increases a temperature of the first portion of the dopant layer during the laser annealing.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Patent number: 8318529
    Abstract: A technique for fabricating an image sensor including a pixel circuitry region and a peripheral circuitry region includes fabricating front side components on a front side of the image sensor. A dopant layer is implanted on a backside of the image sensor. A anti-reflection layer is formed on the backside and covers a first portion of the dopant layer under the pixel circuitry region while exposing a second portion of the dopant layer under the peripheral circuitry region. The first portion of the dopant layer is laser annealed from the backside of the image sensor through the anti-reflection layer. The anti-reflection layer increases a temperature of the first portion of the dopant layer during the laser annealing.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 27, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes
  • Publication number: 20120295385
    Abstract: Embodiments of the present invention are directed to an image sensor having pixel transistors and peripheral transistors disposed in a silicon substrate. For some embodiments, a protective coating is disposed on the peripheral transistors and doped silicon is epitaxially grown on the substrate to form lightly-doped drain (LDD) areas for the pixel transistors. The protective oxide may be used to prevent epitaxial growth of silicon on the peripheral transistors during formation of the LDD areas of the pixel transistors.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 22, 2012
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Duli Mao, Hsin-Chih Tai, Howard E. Rhodes, Vincent Venezia, Yin Qian
  • Patent number: 8314869
    Abstract: An imaging system capable of black level calibration includes an imaging pixel array, at least one black reference pixel, and peripheral circuitry. The imaging pixel array includes a plurality of active pixels each coupled to capture image data. The black reference pixel is coupled to generate a black reference signal for calibrating the image data. Light transmitting layers are disposed on a first side of a pixel array die including the imaging system and cover at least the imaging pixel array and the black reference pixel. A light shielding layer is disposed on the first side of the pixel array die and covers a portion of the light transmitting layers and the black reference pixel without covering the imaging pixel array.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 20, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Wei Zheng, Hsin-Chih Tai, Yin Qian, Hongjun Li, Howard E. Rhodes
  • Publication number: 20120282728
    Abstract: A method of fabricating a backside illuminated imaging sensor that includes a device layer, a metal stack, and an opening is disclosed. The device layer has an imaging array formed in a front side of the device layer, where the imaging array is adapted to receive light from a back side of the device layer. The metal stack is coupled to the front side of the device layer and includes at least one metal interconnect layer having a metal pad. The opening extends from the back side of the device layer to the metal pad to expose the metal pad for wire bonding. The method includes depositing a film on the back side of the device layer and within the opening, then etching the film to form a frame within the opening to structurally reinforce the metal pad.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Hsin-Chih Tai, Howard E. Rhodes, Duli Mao, Vincent Venezia, Yin Qian
  • Patent number: 8293629
    Abstract: Embodiments of a process for forming a photodetector region in a CMOS pixel by dopant implantation, the process comprising masking a photodetector area of a surface of a substrate for formation of the photodetector region, positioning the substrate at a plurality of twist angles, and at each of the plurality of twist angles, directing dopants at the photodetector area at a selected tilt angle. Embodiments of a CMOS pixel comprising a photodetector region formed in a substrate, the photodetector region comprising overlapping first and second dopant implants, wherein the overlap region has a different dopant concentration than the non-overlapping parts of the first and second implants, a floating diffusion formed in the substrate, and a transfer gate formed on the substrate between the photodetector and the transfer gate. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: October 23, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Hsin-Chih Tai, Vincent Venezia, Yin Qian, Howard E. Rhodes