Patents by Inventor Ying Luo

Ying Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759935
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: September 12, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Shiyun Lin, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9741092
    Abstract: Methods and systems for resizing an image utilizing content-aware seam operations include defining low-energy seams defining contextually less-important information and utilizing such information for interpolation based on one-dimensional manifolds. The interpolation can form new seams and/or regenerated pixels that can be combined with the image to provide a content-aware resized image exhibiting smooth and continuous features.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 22, 2017
    Assignee: THOMSON LICENSING
    Inventors: Ying Luo, Ju Guo
  • Patent number: 9735542
    Abstract: An optical source is described. This optical source includes a semiconductor optical amplifier, with a semiconductor other than silicon, which provides a gain medium. In addition, a photonic chip, optically coupled to the semiconductor optical amplifier, includes: an optical waveguide that conveys the optical signal; and a pair of ring-resonator modulators that modulate the optical signal. Furthermore, the pair of ring-resonator modulators is included within an optical cavity in the optical source. For example, the optical cavity may be defined by a reflective coating on one edge of the semiconductor optical amplifier and a reflector on one end of the optical waveguide. Alternatively, the optical cavity may be defined by reflectors on ends of the optical waveguide.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: August 15, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Guoliang Li, Ashok V. Krishnamoorthy, Xuezhe Zheng, Ying Luo
  • Patent number: 9733498
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, the optical modulator may include a carrier-accumulation-type micro-disk resonator fabricated using optical waveguides having a composite structure. Moreover, the composite structure may embed a metal-oxide semiconductor capacitor in the disk resonator. For example, the composite structure may include polysilicon disposed on an oxide layer, which is disposed on a silicon layer in an SOI platform. The optical modulator may have high modulation efficiency and high-speed operation. In addition, the optical modulator may have a compact footprint with low power consumption.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 15, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Xuezhe Zheng, Shiyun Lin, Ashok V. Krishnamoorthy
  • Patent number: 9698269
    Abstract: Fin-type transistor fabrication methods and structures are provided having one or more nitrided conformal layers, to improve reliability of the semiconductor device. The method includes, for example, providing at least one material layer disposed, in part, conformally over a fin extending above a substrate, the material layer(s) including a gate dielectric layer; and performing a conformal nitridation process over an exposed surface of the material layer(s), the conformal nitridation process forming an exposed, conformal nitrided surface.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 4, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Wei Hua Tong, Tien-Ying Luo, Yan Ping Shen, Feng Zhou, Jun Lian, Haoran Shi, Min-hwa Chi, Jin Ping Liu, Haiting Wang, Seung Kim
  • Patent number: 9663451
    Abstract: The present invention relates to new forms of co-crystals of agomelatine and p-toluenesulphonic acid, to a process for their preparation and to pharmaceutical compositions containing them. The co-crystals according to the invention have better solubility than agomelatine and are therefore more suitable for the preparation of pharmaceutical compositions. They also have better stability and purity and, moreover, are obtained by a simple process which does not include any difficult steps.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: May 30, 2017
    Assignees: LES LABORATOIRES SERVIER, SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY
    Inventors: Hanbin Shan, Yuhui Shen, Ying Luo, Philippe Letellier, Michael Lynch
  • Publication number: 20170143276
    Abstract: Disclosed are a system and method for determining a metric and/or indicator of a reliability of a blood glucose sensor in providing glucose measurements. In one aspect, the metric and/or indicator may be computed based, at least in part, on an observed trend associated with signals generated by the blood glucose sensor.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 25, 2017
    Inventors: Rebecca K. Gottlieb, Ying Luo, Raghavendhar Gautham, Bradley Liang, Anirban Roy, Kenneth W. Cooper, Rajiv Shah, Barry Keenan
  • Publication number: 20170139237
    Abstract: A dual-ring-modulated laser includes a gain medium having a reflective end coupled to a gain-medium reflector and an output end coupled to a reflector circuit to form a lasing cavity. This reflector circuit comprises: a first ring modulator; a second ring modulator; and a shared waveguide that optically couples the first and second ring modulators. The first and second ring modulators have resonance peaks, which are tuned to have an alignment separation from each other. During operation, the first and second ring modulators are driven in opposing directions based on the same electrical input signal, so the resonance peaks of the first and second ring modulators shift wavelengths in the opposing directions during modulation. The modulation shift for each of the resonance peaks equals the alignment separation, so the resonance peaks interchange positions during modulation to cancel out reflectivity changes in the lasing cavity caused by the modulation.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Applicant: Oracle International Corporation
    Inventors: Ying Luo, Shiyun Lin, Ashok V. Krishnamoorthy, Jock T. Bovington, Xuezhe Zheng
  • Patent number: 9647424
    Abstract: An integrated circuit includes an optical reflector with one or two bus optical waveguides and a one-dimensional, photonic crystal nanobeam cavity to provide single-mode reflection with a narrow bandwidth. In particular, the nanobeam cavity may be implemented on a nanobeam-cavity optical waveguide (such as a channel or ridge optical waveguide), which is optically coupled to the one or two bus optical waveguides. The nanobeam-cavity optical waveguide may include notches along a symmetry axis of the nanobeam-cavity optical waveguide that are partially etched from edges of the nanobeam-cavity optical waveguide toward a center of the nanobeam-cavity optical waveguide. Furthermore, a fill factor of the notches may vary as a function of location along the symmetry axis, while a pitch of the notches is unchanged, to define the nanobeam cavity.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: May 9, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Shiyun Lin, Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
  • Patent number: 9639744
    Abstract: The invention provides a robust method to control interactive media using gestures. A method to retrieve metadata information from a multimedia outlet device, wherein the method follows the steps: (1) extracting image hot spot areas in a current captured image using face detection, (2) detecting a human gesture directive in at least one image hot spot area using gesture recognition, (3) determining if the gesture directive matches a pre-assigned command to a rich interaction module, (4) sending a signal to a rich interaction module corresponding to the pre-assigned command detected, (5) extracting a media image hot spot area from electrical signals sent from the multimedia, (6) matching any detected human gestures in at least one image hot spot area using gesture recognition with a specific pixel on a device screen, and (7) retrieving information from metadata assigned to an area of pixels on the screen.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: May 2, 2017
    Assignee: THOMSON LICENSING
    Inventors: Ruiduo Yang, Ying Luo, Tao Zhang
  • Publication number: 20170102563
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, the optical modulator may include a carrier-accumulation-type micro-disk resonator fabricated using optical waveguides having a composite structure. Moreover, the composite structure may embed a metal-oxide semiconductor capacitor in the disk resonator. For example, the composite structure may include polysilicon disposed on an oxide layer, which is disposed on a silicon layer in an SOI platform. The optical modulator may have high modulation efficiency and high-speed operation. In addition, the optical modulator may have a compact footprint with low power consumption.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying Luo, Xuezhe Zheng, Shiyun Lin, Ashok V. Krishnamoorthy
  • Publication number: 20170104307
    Abstract: An integrated circuit includes an optical reflector with one or two bus optical waveguides and a one-dimensional, photonic crystal nanobeam cavity to provide single-mode reflection with a narrow bandwidth. In particular, the nanobeam cavity may be implemented on a nanobeam-cavity optical waveguide (such as a channel or ridge optical waveguide), which is optically coupled to the one or two bus optical waveguides. The nanobeam-cavity optical waveguide may include notches along a symmetry axis of the nanobeam-cavity optical waveguide that are partially etched from edges of the nanobeam-cavity optical waveguide toward a center of the nanobeam-cavity optical waveguide. Furthermore, a fill factor of the notches may vary as a function of location along the symmetry axis, while a pitch of the notches is unchanged, to define the nanobeam cavity.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 13, 2017
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Shiyun Lin, Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
  • Patent number: 9618709
    Abstract: A technique for fabricating a hybrid optical source is described. During this fabrication technique, a III-V compound-semiconductor active gain medium is integrated with a silicon-on-insulator (SOI) chip (or wafer) using edge coupling to form a co-planar hybrid optical source. Using a backside etch-assisted cleaving technique, and a temporary transparent substrate with alignment markers, a III-V compound-semiconductor chip with proper edge polish and coating can be integrated with a processed SOI chip (or wafer) with accurate alignment. This fabrication technique may significantly reduce the alignment complexity when fabricating the hybrid optical source, and may enable wafer-scale integration.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: April 11, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Xuezhe Zheng, Ivan Shubin, Ying Luo, Guoliang Li, Ashok V. Krishnamoorthy
  • Patent number: 9601311
    Abstract: Laser sub-divisional error (SDE) effect is compensated by using adaptive tuning. This compensated signal can be applied to position detection of stage in ebeam inspection tool, particularly for continuous moving stage.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: March 21, 2017
    Assignee: HERMES MICROVISION INC.
    Inventors: Ying Luo, KuoFeng Tseng, Zhonghua Dong
  • Patent number: 9579066
    Abstract: Disclosed are a system and method for determining a metric and/or indicator of a reliability of a blood glucose sensor in providing glucose measurements. In one aspect, the metric and/or indicator may be computed based, at least in part, on an observed trend associated with signals generated by the blood glucose sensor.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: February 28, 2017
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca K. Gottlieb, Ying Luo, Raghavendhar Gautham, Bradley Liang, Anirban Roy, Kenneth W. Cooper, Rajiv Shah, Barry Keenan
  • Patent number: 9575256
    Abstract: An optical device includes an optical reflector based on a coupled-loopback optical waveguide. In particular, an input port, an output port and an optical loop in arms of the optical reflector are optically coupled to a directional coupler. The directional coupler evanescently couples an optical signal between the arms. For example, the directional coupler may include: a multimode interference coupler and/or a Mach-Zehnder Interferometer (MZI). Moreover, destructive interference during the evanescent coupling determines the reflection and transmission power coefficients of the optical reflector.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 21, 2017
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Guoliang Li, Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
  • Patent number: 9573891
    Abstract: Complexes of agomelatine and sulphonic acids of formula (I): Medicinal products containing the same which are useful in treating disorders of the melatoninergic system.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: February 21, 2017
    Assignees: LES LABORATOIRES SERVIER, SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY
    Inventors: Hanbin Shan, Yuhui Shen, Ying Luo, Philippe Letellier, Michael Lynch
  • Publication number: 20160295234
    Abstract: Disclosed is a low-complexity and yet efficient lossy method to compress distortion information for motion estimation, resulting in significant reduction in needed storage capacity. A system for implementing the method and a computer-readable medium for storing the method are also disclosed. The method includes determining and storing a distortion value for each trial motion vector in a plurality of trial motion vectors. Each trial motion vector specifies a position of a search region relative to a reference frame. The method further includes compressing each of the distortion values as a fixed number of bits based upon a minimum distortion value amongst the stored distortion values, and re-storing each compressed distortion value in place of its uncompressed value.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 6, 2016
    Applicant: ATI TECHNOLOGIES ULC
    Inventors: Khaled Mammou, Ihab M. A. Amer, Gabor Sines, John-Paul A. Compagnone, Gerald SC. Chan, Ying Luo, Edward A. Harold, Lei Zhang, Benedict Chien
  • Publication number: 20160260579
    Abstract: Laser sub-divisional error (SDE) effect is compensated by using adaptive tuning. This compensated signal can be applied to position detection of stage in ebeam inspection tool, particularly for continuous moving stage.
    Type: Application
    Filed: March 3, 2016
    Publication date: September 8, 2016
    Applicant: Hermes Microvision Inc.
    Inventors: Ying Luo, KuoFeng Tseng, Zhonghua Dong
  • Publication number: 20160190324
    Abstract: Fin-type transistor fabrication methods and structures are provided having one or more nitrided conformal layers, to improve reliability of the semiconductor device. The method includes, for example, providing at least one material layer disposed, in part, conformally over a fin extending above a substrate, the material layer(s) including a gate dielectric layer; and performing a conformal nitridation process over an exposed surface of the material layer(s), the conformal nitridation process forming an exposed, conformal nitrided surface.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 30, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Wei Hua TONG, Tien-Ying LUO, Yan Ping SHEN, Feng ZHOU, Jun LIAN, Haoran SHI, Min-hwa CHI, Jin Ping LIU, Haiting WANG, Seung KIM