Patents by Inventor Yong CHA

Yong CHA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200279601
    Abstract: A memory device includes: a substrate; a bit line which is vertically oriented from the substrate; a plate line which is vertically oriented from the substrate; and a memory cell provided with a transistor and a capacitor that are positioned in a lateral arrangement between the bit line and the plate line, wherein the transistor includes: an active layer which is laterally oriented to be parallel to the substrate between the bit line and the capacitor; and a line-shaped lower word line and a line-shaped upper word line vertically stacked with the active layer therebetween and oriented to intersect with the active layer.
    Type: Application
    Filed: December 27, 2019
    Publication date: September 3, 2020
    Inventors: Seung-Hwan KIM, Su-Ock CHUNG, Seon-Yong CHA
  • Patent number: 10730809
    Abstract: A method of preparing butadiene that includes supplying butene, oxygen, nitrogen, and steam into a reactor filled with a metal oxide catalyst, and performing an oxidative dehydrogenation reaction at a temperature of 300 to 450° C. as a reaction step; after the reaction step, maintaining supplying the butene, oxygen, nitrogen, and steam within a range within which the flow rate change of the butene, oxygen, nitrogen, and steam is less than ±40%, or stopping supplying the butene, and cooling the reactor to a temperature range of 200° C. or lower and higher than 70° C. as a first cooling step; and after the first cooling step, stopping supplying the butene, oxygen, nitrogen, and steam or stopping at least supplying the butene, and cooling the reactor to a temperature of 70° C. or lower as a second cooling step.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 4, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Jun Han Kang, Kyong Yong Cha, Ye Seul Hwang, Jun Kyu Han, Sang Jin Han
  • Publication number: 20200135790
    Abstract: An image sensor package includes an image sensor chip, a logic chip, and a memory chip structure that are vertically stacked. The image sensor chip includes a pixel array and an interconnection structure that receives a power voltage, ground voltage, or signals. The logic chip processes pixel signals from the image sensor chip and receives the power voltage, ground voltage, or signals via the image sensor chip. The memory chip structure includes a memory chip, a molding portion surrounding the memory chip, and at least one through mold via contact vertically passing through the molding portion and connected to at least one of the logic or memory chip. The memory chip stores at least one of a pixel signal processed by the logic chip or a pixel signal from the image sensor chip and receives the power voltage, ground voltage, or signals via the image sensor chip and logic chip.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 30, 2020
    Inventors: Yong-hoon KIM, Ji-chul KIM, Seung-yong CHA, Jae-choon KIM
  • Publication number: 20200122126
    Abstract: Provided is a catalyst system for oxidative dehydrogenation, a reactor for preparing butadiene including the catalyst system, and a method of preparing 1,3-butadiene. In the catalyst system for oxidative dehydrogenation, a coating catalyst is diluted with a specific dilution filler and a reactor is filled with the diluted catalyst, or a reactor is filled with a catalyst for oxidative dehydrogenation so that the concentration of an active ingredient included in the catalyst gradually increases in the direction from reactants inlet in which reactants are fed into the reactor to products outlet. The catalyst system for oxidative dehydrogenation can efficiently control heat generated inside a reactor, thereby improving conversion rate, selectivity, yield, and long-term stability of a catalyst.
    Type: Application
    Filed: November 27, 2018
    Publication date: April 23, 2020
    Inventors: Myungji SUH, Dong Hyun KO, Kyong Yong CHA
  • Patent number: 10543478
    Abstract: The present invention relates to a method of preparing a catalyst for oxidative dehydrogenation. More particularly, the method of preparing a catalyst for oxidative dehydrogenation includes a first step of preparing an aqueous iron-metal precursor solution by dissolving a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor in distilled water; a second step of obtaining a slurry of an iron-metal oxide by reacting the aqueous iron-metal precursor solution with ammonia water in a coprecipitation bath to form an iron-metal oxide (step b) and then filtering the iron-metal oxide; and a third step of heating the iron-metal oxide slurry. In accordance with the present invention, a metal oxide catalyst, as a catalyst for oxidative dehydrogenation, having a high spinel phase structure proportion may be economically prepared by a simple process.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 28, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Kyong Yong Cha, Myung Ji Suh, Dong Hyun Ko, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang, Seong Min Kim
  • Patent number: 10541263
    Abstract: An image sensor package includes an image sensor chip, a logic chip, and a memory chip structure that are vertically stacked. The image sensor chip includes a pixel array and an interconnection structure that receives a power voltage, ground voltage, or signals. The logic chip processes pixel signals from the image sensor chip and receives the power voltage, ground voltage, or signals via the image sensor chip. The memory chip structure includes a memory chip, a molding portion surrounding the memory chip, and at least one through mold via contact vertically passing through the molding portion and connected to at least one of the logic or memory chip. The memory chip stores at least one of a pixel signal processed by the logic chip or a pixel signal from the image sensor chip and receives the power voltage, ground voltage, or signals via the image sensor chip and logic chip.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 21, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-hoon Kim, Ji-chul Kim, Seung-yong Cha, Jae-choon Kim
  • Publication number: 20200001279
    Abstract: Provided is a method for producing a zinc ferrite catalyst, the method comprising: preparing a zinc precursor solution; preparing a ferrite precursor solution; obtaining a first precipitate by bringing the zinc precursor solution into contact with an alkaline solution; obtaining a second precipitate by adding the ferrite precursor solution to the first precipitate; and drying and firing the second precipitate after filtering the second precipitate.
    Type: Application
    Filed: December 19, 2018
    Publication date: January 2, 2020
    Inventors: Jun Kyu HAN, Dong Hyun KO, Kyong Yong CHA, Sang Jin HAN, Sunhwan HWANG, Seongmin KIM
  • Patent number: 10518250
    Abstract: The present invention relates to a ferrite-based catalyst composite, a method of preparing the same, and a method of preparing butadiene using the same. More particularly, the present invention provides a ferrite-based catalyst composite having a shape that allows effective dispersion of excess heat generated in a butadiene production process and prevention of catalyst damage and side reaction occurrence by reducing direct exposure of a catalyst to heat, a method of preparing the ferrite-based catalyst composite, and a method of preparing butadiene capable of lowering the temperature of a hot spot and reducing generation of Cox by allowing active sites of a catalyst to have a broad temperature gradient (profile) during oxidative dehydrogenation using the ferrite-based catalyst composite, and thus, providing improved process efficiency.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 31, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Dae Heung Choi, Dong Hyun Ko, Kyong Yong Cha, Myung Ji Suh, Ye Seul Hwang, Sun Hwan Hwang, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han, Jun Kyu Han
  • Patent number: 10515556
    Abstract: Provided is a flight path calculating method for high altitude long endurance of an unmanned aerial vehicle based on regenerative fuel cells and solar cells according to an exemplary embodiment of the present invention may include a modeling step, a simulation step, and an analyzing step, and may be configured in a program form executed by an arithmetic processing means including a computer. a flight path searching method and a flight path searching apparatus for performing continuous flight path re-searching on the basis of information measured in real time during a flight of the unmanned aerial vehicle in the stratosphere to change a flight path so that the unmanned aerial vehicle may permanently perform long endurance in the stratosphere is provided.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 24, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Minjin Kim, Young-jun Sohn, Seung-gon Kim, Gu-gon Park, Byungchan Bae, Sung-dae Yim, Seok-hee Park, Tae-hyun Yang, Won-yong Lee, Chang-soo Kim, Moon-Yong Cha
  • Publication number: 20190385997
    Abstract: An electronic device package includes a package substrate, an interposer located above the package substrate and electrically connected to the package substrate, a processing device located above the interposer and electrically connected to the interposer, at least one high bandwidth memory device located above the interposer and electrically connected to the interposer and the processing device, a power management integrated circuit device located above the interposer and electrically connected to the interposer and the processing device, and a passive device located on or inside the interposer and electrically connected to the power management integrated circuit device.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: JU-YOUN CHOI, EUN-SEOK SONG, SEUNG-YONG CHA, YUN-HEE LEE
  • Patent number: 10486150
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 26, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sun Hwan Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Ye Seul Hwang, Jun Kyu Han, Seong Min Kim, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Sang Jin Han
  • Publication number: 20190329226
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1 of the present invention, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 31, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Myung Ji SUH, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Ye Seul HWANG, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 10456775
    Abstract: The present disclosure relates to a method of preparing a zinc ferrite catalyst. More particularly, the present invention relates to a method of preparing a zinc ferrite catalyst comprising a) a step of dissolving a zinc precursor and an iron (III) precursor in water to prepare an aqueous metal precursor solution; b) a step of precipitating a solid catalyst precursor while vaporizing water in the aqueous metal precursor solution; and c) a step of firing the precipitated solid catalyst precursor to prepare a zinc ferrite catalyst. In accordance with the present disclosure, the method of preparing a zinc ferrite catalyst can be simply carried out without a pH adjustment step and can secure reproducibility.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: October 29, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Ye Seul Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi
  • Publication number: 20190299193
    Abstract: A method of preparing a catalyst for oxidative dehydrogenation that includes coprecipitation and injecting inert gas or air at a specific time point to reduce the ratio of an inactive ?-Fe2O3 crystal structure, thereby improving the activity of the catalyst. Also provided is a method of performing oxidative dehydrogenation using the catalyst. When oxidative dehydrogenation of butene is performed using the catalyst, side reaction may be reduced, and selectivity for butadiene may be improved, providing butadiene with high productivity.
    Type: Application
    Filed: April 26, 2018
    Publication date: October 3, 2019
    Inventors: Sang Jin HAN, Dong Hyun KO, Kyong Yong CHA, Jun Kyu HAN, Sun Hwan HWANG
  • Patent number: 10424571
    Abstract: An electronic device package includes a package substrate, an interposer located above the package substrate and electrically connected to the package substrate, a processing device located above the interposer and electrically connected to the interposer, at least one high bandwidth memory device located above the interposer and electrically connected to the interposer and the processing device, a power management integrated circuit device located above the interposer and electrically connected to the interposer and the processing device, and a passive device located on or inside the interposer and electrically connected to the power management integrated circuit device.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: September 24, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Youn Choi, Eun-Seok Song, Seung-Yong Cha, Yun-Hee Lee
  • Patent number: 10343958
    Abstract: The present invention relates to a catalyst for coating a surface of a porous material and a method of treating the surface of the porous material. More particularly, when the catalyst for coating a surface of a porous material and the method of treating the surface of the porous material of the present invention are used for butadiene synthesis reaction under high gas space velocity and high pressure conditions, heat generation may be easily controlled and differential pressure may be effectively alleviated, thereby providing improved reactant conversion rate and product selectivity.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Jun Han Kang, Dong Hyun Ko, Seong Min Kim, Hyun Seok Nam, Joo Hyuck Lee, Kyong Yong Cha, Dae Heung Choi, Sang Jin Han, Jun Kyu Han, Sun Hwan Hwang, Ye Seul Hwang
  • Publication number: 20190184388
    Abstract: The present invention relates to a catalyst for oxidative dehydrogenation and a method of preparing the same. More particularly, the present invention provides a catalyst for oxidative dehydrogenation allowing oxidative dehydrogenation reactivity to be secured while increasing a first pass yield, and a method of preparing the catalyst.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 20, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Kyong Yong CHA, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Seong Min KIM, Jun Han KANG, Joo Hyuck LEE, Hyun Seok NAM, Sang Jin HAN
  • Patent number: 10315969
    Abstract: Provided are a method of preparing a multicomponent bismuth-molybdenum composite metal oxide catalyst, and a multicomponent bismuth-molybdenum composite metal oxide catalyst prepared thereby. According to the preparation method, since the almost same structure as that of a typical quaternary bismuth-molybdenum catalyst may be obtained by performing two-step co-precipitation, i.e., primary and secondary co-precipitation, of metal components constituting the catalyst, the reduction of catalytic activity due to the deformation of the structure of the catalyst may be suppressed.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: June 11, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Ye Seul Hwang, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Myung Ji Suh, Jun Han Kang, Joo Hyuck Lee, Hyun Seok Nam, Jun Kyu Han, Sang Jin Han
  • Publication number: 20190144362
    Abstract: A method of preparing butadiene that includes supplying butene, oxygen, nitrogen, and steam into a reactor filled with a metal oxide catalyst, and performing an oxidative dehydrogenation reaction at a temperature of 300 to 450° C. as a reaction step; after the reaction step, maintaining supplying the butene, oxygen, nitrogen, and steam within a range within which the flow rate change of the butene, oxygen, nitrogen, and steam is less than ±40%, or stopping supplying the butene, and cooling the reactor to a temperature range of 200° C. or lower and higher than 70° C. as a first cooling step; and after the first cooling step, stopping supplying the butene, oxygen, nitrogen, and steam or stopping at least supplying the butene, and cooling the reactor to a temperature of 70° C. or lower as a second cooling step.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 16, 2019
    Inventors: Myung Ji SUH, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN
  • Publication number: 20190134612
    Abstract: A ferrite catalyst for oxidative dehydrogenation and a method of preparing the same. The ferrite catalyst is prepared using an epoxide-based sol-gel method, wherein a step of burning includes a first burning step, in which burning is performed at a temperature of 70 to 200° C.; and a second burning step, in which burning is performed after the temperature is raised from a temperature in the range of greater than 200° C. to 250° C. to a temperature in the range of 600 to 900° C.
    Type: Application
    Filed: January 4, 2018
    Publication date: May 9, 2019
    Inventors: Sun Hwan HWANG, Dong Hyun KO, Jun Han KANG, Kyong Yong CHA, Joo Hyuck LEE, Hyun Seok NAM, Dae Heung CHOI, Myung Ji SUH, Ye Seul HWANG, Jun Kyu HAN, Sang Jin HAN, Seong Min KIM