Patents by Inventor Yong Lu

Yong Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11539071
    Abstract: A sulfide-impregnated solid-state battery is provided. The battery comprises a cell core constructed by basic cell units. Each unit comprises a positive electrode comprising a cathode layer and a positive meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The cell unit further comprises a negative electrode comprising an anode layer and a negative meshed current collector comprising a conductive material which is further coated by oxide-based solid-state electrolyte. The positive and negative electrodes are stacked together to form the cell unit. The two coated oxide-based solid electrolyte layers are disposed between the positive and negative electrode as dual separators. Such a cell unit may be repeated or connected in parallel or bipolar stacking to form the cell core to achieve a desired battery voltage, power and energy. The cell core comprises a sulfide-based solid-state electrolyte dispersed in the pore structures of cell core.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 27, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe Li, Xiaochao Que, Haijing Liu, Yong Lu, Mark W. Verbrugge, Meiyuan Wu
  • Patent number: 11535921
    Abstract: Disclosed are a method and a device for controlling flow of liquid zinc (2) in a zinc pot (1) for hot-dip galvanization. Under the blowing effects of an air knife above the zinc pot (1) for hot-dip galvanization onto strip steel (3), the liquid zinc (2) diffuses and flows outwards to zones (zones I, II, III and IV) comprising the left side, the right side, the front end of the zinc pot, respectively, and a zone between the strip steel (3) and a furnace snout (4), and surface dross rapidly generated on the surface of the liquid zinc (2) is driven to flow outwards to the zones (zones I, II, III and IV). On edge sides of the zones (zones I, II, III and IV), travelling magnetic field generators (71, 72, 73, 74, 75, 76, 77, 78, 712, 756) are arranged in multiple sections above the surface of the liquid zinc (2) in the zinc pot (1), so as to excite a travelling magnetic field to generate an electromagnetic driving force on the liquid zinc (2) to drive the flow of the liquid zinc (2).
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 27, 2022
    Assignee: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Xiaoguang Hou, Hongwei Qian, Lei Yu, Shanqing Li, Yong Lu, Xinyan Jin, Yueming Zhou, Jun Shen, Cunbing Wang, Bing Yang, Hui Wang, Hao Xu, Tingquan Gu
  • Publication number: 20220320267
    Abstract: A method for forming a double-sided capacitor structure includes: providing a base, the base including a substrate, a plurality of capacitor contacts located in the substrate, a stack structure located on a surface of the substrate and a plurality of capacitor holes running through the stack structure and exposing the capacitor contacts, the stack structure including sacrificial layers and support layers which are stacked alternately; successively forming a first electrode layer, a first dielectric layer and a second electrode layer on inner walls of the capacitor holes; forming a first conductive filling layer in the capacitor holes; forming an auxiliary layer for sealing the capacitor holes; removing a part of the auxiliary layers and several of the support layers and the sacrificial layers to expose the first electrode layer; and, forming a second dielectric layer and a third electrode layer.
    Type: Application
    Filed: March 8, 2021
    Publication date: October 6, 2022
    Applicant: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Wenjia HU, Han WU, Yong LU
  • Publication number: 20220302526
    Abstract: The present disclosure provides a solid-state battery including at least one current collector that is in communication with one or more switches configured to move between open and closed positions, where the open position corresponds to a first operational state of the solid-state battery and the closed position corresponds to a second operational state of the solid-state battery; one or more electrodes disposed adjacent to the one or more current collectors; and one or more electrothermal material foils including a resistor material that is in electrical communication with that at least one current collector, where in the first operational state electrons may flow through the one or more electrothermal material foils during cycling of the solid-state battery so as to initiate a heating mode, and in the second operational state electrons may flow through the current collector during cycling of the solid-state battery so as to initiate a non-heating mode.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 22, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Xiaochao QUE, Haijing LIU, Yong LU, Meiyuan WU, Jingyuan LIU
  • Publication number: 20220302122
    Abstract: The present disclosure provides a capacitor structure and a method for manufacturing same. The capacitor structure includes: a substrate, a first capacitor contact layer, a bottom electrode layer, a capacitor dielectric layer, and a top electrode layer, where the first capacitor contact layer is arranged on the substrate in an array manner, the bottom electrode layer surrounds a side wall of the first capacitor contact layer and extends in a direction of the first capacitor contact layer away from the substrate, the capacitor dielectric layer covers an upper surface of the substrate, a surface of the bottom electrode layer and an upper surface of the first capacitor contact layer, and the top electrode layer covers a surface of the capacitor dielectric layer.
    Type: Application
    Filed: June 21, 2021
    Publication date: September 22, 2022
    Inventors: Chaojun SHENG, Yong LU
  • Patent number: 11430981
    Abstract: A material including TiO2 nanoparticles at least partially embedded in a matrix material of TixNbyOz, where 0<x?2, 0<y?24, and 0<z?62, is provided. Methods of making the material are also provided.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: August 30, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong Lu, Dewen Kong, Mengyan Hou, Zhe Li, Haijing Liu
  • Publication number: 20220263129
    Abstract: An electrolyte composition is provided. The electrolyte composition includes a solvate ionic liquid having an anion and a complex of an ether and a cation, and a diluter including a phosphorus-containing flame-retardant having a dielectric constant of less than or equal to about 20.
    Type: Application
    Filed: December 20, 2021
    Publication date: August 18, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong LU, Zhe LI, Qili SU
  • Patent number: 11393640
    Abstract: A battery having a plurality of electrodes immersed in a water-in-salt electrolytic solution is disclosed. The water-in-salt electrolytic solution includes a sufficient amount of a lithium salt disposed in an aqueous solvent, at least 14 moles of lithium salt per kg of aqueous solvent, such that a dissociated lithium ion is solvated by less than 4 water molecules. The plurality of electrodes includes a first type electrode, a second type electrode, and a third type electrode selectively assembled in a predetermined order of arrangement into an electrode stack assembly. The first type electrode includes an activated carbon, the second type electrodes include one of a lithium manganese oxide (LMO) and titanium dioxide (TiO2), and the third type electrodes include the other of the LMO and TiO2. The first type electrode may be that of a cathode and/or anode.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: July 19, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong Lu, Qili Su, Haijing Liu, Jingjing Wu
  • Publication number: 20220223468
    Abstract: Embodiments of the present application provide a semiconductor structure and its manufacturing method. The method for manufacturing a semiconductor structure includes: providing a substrate and a dielectric layer located on the substrate, the substrate being provided therein with a conductive structure; etching a certain thickness of the dielectric layer to form a first groove; performing an isotropic etching process on the dielectric layer located at the bottom of the first groove to form a second groove, a maximum width of the second groove being greater than a bottom width of the first groove in a direction parallel with a surface of the substrate; and etching the dielectric layer located at the bottom of the second groove to form a third groove exposing the conductive structure.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 14, 2022
    Inventors: Yong LU, MingHung HSIEH
  • Publication number: 20220214347
    Abstract: Disclosed are a combined formulation kit for analyzing the phenotype and function of a CD1c+ dendritic cell subset and the use thereof, wherein the detection objects of the kit include CD1c, CD40, IL-6 and IL-10. The kit can be used to efficiently and quickly identify the phenotype of a CD1c+ dendritic cell subset in peripheral blood and analyze the function thereof, thereby ensuring accuracy and reducing the economic cost produced by detecting a large number of surface antigen molecules, and the detection method is also simple to implement.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 7, 2022
    Inventors: Fang Zhou, Xiaoping Chen, Li Qin, Yanli Gu, Wenlong Xu, Yong Lu, Xu Chang, Guojian Wei, Zhien Rong
  • Patent number: 11380939
    Abstract: A hybrid lithium ion capacitor battery and method of making the same is disclosed. The hybrid lithium ion capacitor battery includes a positive electrode separated from a negative electrode by a separator layer. A first activated carbon layer is disposed between the separator layer and one of the positive and negative electrodes. The first activated carbon layer is coated on a first surface of the separator layer. A second activated carbon layer is disposed between the separator layer and the other of the positive and negative electrodes. The second activated carbon layer is coated on a second surface of the separator layer. A first current collector coextensively contacts the first electrode and a second current collector coextensively contacts the second electrode. An electrolytic solution carries lithium cations between the positive and negative electrodes through the activated carbon coated separator layer.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 5, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili Su, Dewen Kong, Yong Lu, Zhe Li
  • Patent number: 11374257
    Abstract: In an embodiment, a softened solid-state electrolyte, comprises an oxide-based solid-state electrolyte, where at least a portion of the oxide anions in the oxide-based solid-state electrolyte is replaced with a replacement anion. In another embodiment, a softened solid-state electrolyte comprises a sulfide-based solid-state electrolyte, wherein at least a portion of the sulfide anions in the sulfide-based solid-state electrolyte is replaced with the replacement anion. When the replacement anion replaces the oxide anion, the replacement anion has a larger atomic radius than the oxide anion and when the replacement anion replaces the sulfide anion, the replacement anion has a larger atomic radius than the sulfide anion.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 28, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mengyan Hou, Haijing Liu, Dewen Kong, Yong Lu
  • Publication number: 20220181598
    Abstract: The present disclosure relates to a solid-state electrochemical cell having a uniformly distributed solid-state electrolyte and methods of fabrication relating thereto. The method may include forming a plurality of apertures within the one or more solid-state electrodes; impregnating the one or more solid-state electrodes with a solid-state electrolyte precursor solution so as to fill the plurality of apertures and any other void or pores within the one or more electrodes with the solid-state electrolyte precursor solution; and heating the one or more electrodes so as to solidify the solid-state electrolyte precursor solution and to form the distributed solid-state electrolyte.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Applicant: GM Global Technology Operations LLC
    Inventors: Yong LU, Zhe LI, Xiaochao QUE, Haijing LIU, Meiyuan WU
  • Publication number: 20220181685
    Abstract: A method for forming a bipolar solid-state battery includes preparing a mixture of gel precursor solution and solid electrolyte. The gel precursor includes a polymer, a first solvent, and a liquid electrolyte. The liquid electrolyte includes a second solvent, a lithium salt, and electrolyte additive. The method includes loading the mixture onto at least one of a first electrode, a second electrode, and a third electrode. Each of the first, second, and third electrodes includes a plurality of solid-state electroactive particles. The method includes removing at least a portion of the first solvent from the mixture to form a gel and positioning one of the first, second, and third electrodes with respect to another of the first, second, and third electrodes. The method includes applying a polymer blocker to a border of the first, second, or third electrodes.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Applicant: GM Global Technology Operations LLC
    Inventors: Zhe LI, Meiyuan WU, Yong LU, Haijing LIU, Xiaochao QUE
  • Publication number: 20220181710
    Abstract: The present disclosure relates to capacitor-assisted lithium-sulfur batteries including capacitor electrodes and/or capacitor-based interlayers. For example, a capacitor-assisted lithium-sulfur battery that includes two or more cells is provided. Each cell includes at least two electrodes selected from: a first electrode including a sulfur-containing electroactive material; a second electrode including a negative electroactive material; a first capacitor electrode including a positive capacitor active material; and a second capacitor electrode including a negative capacitor active material. Each electrode may be disposed adjacent to a surface of a current collector and a separator may be disposed between adjacent electrodes so as to provide electrical separation. One of the two or more cells includes the first electrode and the second electrode, and no cell includes both the first electrode and the first capacitor electrode or both the second electrode and the second capacitor electrode.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe Li, Yong Lu, Haijing Liu
  • Publication number: 20220181629
    Abstract: The present disclosure relates to an electrochemical cell having an elastic binding polymer that improves long-term performance of the electrochemical cell, particularly when the electrochemical cell includes an electroactive material that undergoes volumetric expansion and contraction during cycling of the electrochemical cell (such as, silicon-containing electroactive materials). The electrochemical cell can include the elastic binding polymer as an electrode additive and/or a coating layer disposed adjacent to an exposed surface of an electrode that includes an electroactive material that undergoes volumetric expansion and contraction and/or a gel layer disposed adjacent to an electrode that includes an electroactive material that undergoes volumetric expansion and contraction. The elastic binding polymer may include one or more alginates or alginate derivatives and at least one crosslinker.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong Lu, Zhe Li, Meiyuan Wu, Haijing Liu
  • Publication number: 20220166031
    Abstract: The present disclosure provides a solid-state bipolar battery that includes negative and positive electrodes having thicknesses between about 100 ?m and about 3000 ?m, and a solid-state electrolyte layer disposed between the negative electrode and the positive electrode and having a thickness between about 5 ?m and about 100 ?m. The first electrode includes a plurality of negative solid-state electroactive particles embedded on or disposed within a first porous material. The second electrode includes plurality of positive solid-state electroactive particles embedded on or disposed within a second porous material that is the same or different from the first porous material. The solid-state bipolar battery includes a first current collector foil disposed on the first porous material, and a second current collector foil disposed on the second porous material. The first and second current collector foils may each have a thickness less than or equal to about 10 ?m.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 26, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhe LI, Xiaochao QUE, Haijing LIU, Yong LU, Meiyuan WU, Thomas A. YERSAK, Mei CAI
  • Publication number: 20220147826
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for convolution with workload-balanced activation sparsity are described. An exemplary method comprises: assigning an input tensor and a weight tensor at a convolution layer into a plurality of processors to perform Multiply-Accumulate (MAC) operations in parallel based on the input tensor and the weight tensor; obtaining a plurality of output values based on results of the MAC operations; constructing one or more banks of output values based on the plurality of output values; for each of the banks, performing a top-K sorting on the one or more output values in the bank to obtain K output values; pruning each of the banks by setting the one or more output values other than the obtained K output values in the each bank as zeros; and constructing an output tensor of the convolution layer based on the pruned banks.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 12, 2022
    Inventors: ZHIBIN XIAO, ENXU YAN, YONG LU, WEI WANG
  • Publication number: 20220140422
    Abstract: A solid-state electrochemical cell that cycles lithium ions is provide, where the electrochemical cell has an electrolyte layer in a solid-state or semi-solid state defining a first surface. A solid electrode having an electroactive material that defines a second surface is present. A hybrid capacitor material including a metal organic framework intermingled with solid-state electrolyte particles is disposed in at least one of the following: the solid electrode, an interfacial layer disposed between the first surface of the electrolyte and the second surface of the solid electrode, or both in the solid electrode and the interfacial layer.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 5, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Si CHEN, Yong LU, Meiyuan WU, Haijing LIU, Zhe LI
  • Publication number: 20220122989
    Abstract: The disclosure relates to a buried bit line and a forming method thereof, the buried bit line is formed in a bit line slot of a substrate, the buried bit line includes a first bit line layer formed in the bit line slot, a first blocking layer and a second bit line layer. A top of the first bit line layer is lower than a surface of the substrate. The first blocking layer is at least partially formed between the first bit line layer and an inner wall of the bit line slot. The second bit line layer is formed in the bit line slot and configured to communicate the first bit line layer with a drain region in the substrate.
    Type: Application
    Filed: August 30, 2021
    Publication date: April 21, 2022
    Inventors: Gongyi WU, Yong LU, Penghui XU