Patents by Inventor Yong-Shiuan Tsair
Yong-Shiuan Tsair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12238939Abstract: A memory device includes a first bottom electrode, a first memory stack, and a second memory stack. The first bottom electrode has a first portion and a second portion connected to the first portion. The first memory stack is over the first portion of the first bottom electrode. The first memory stack includes a first resistive switching element and a first top electrode over the first resistive switching element. The second memory stack is over the second portion of the first bottom electrode. The second memory stack comprises a second resistive switching element and a second top electrode over the second resistive switching element.Type: GrantFiled: March 31, 2022Date of Patent: February 25, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chieh-Fei Chiu, Yong-Shiuan Tsair, Wen-Ting Chu, Yu-Wen Liao, Chin-Yu Mei, Po-Hao Tseng
-
Patent number: 12232333Abstract: A method for fabricating an integrated circuit is provided. The method includes depositing a dielectric layer over a conductive feature; etching an opening in the dielectric layer to expose the conductive feature, such that the dielectric layer has a tapered sidewall surrounding the opening; depositing a bottom electrode layer into the opening in the dielectric layer; depositing a resistance switch layer over the bottom electrode layer; patterning the resistance switch layer and the bottom electrode layer respectively into a resistance switch element and a bottom electrode, in which a sidewall of the bottom electrode is landing on the tapered sidewall of the dielectric layer.Type: GrantFiled: July 28, 2023Date of Patent: February 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chieh-Fei Chiu, Wen-Ting Chu, Yong-Shiuan Tsair, Yu-Wen Liao, Chih-Yang Chang, Chin-Chieh Yang
-
Publication number: 20250048943Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a memory device arranged over an etch stop material on a substrate. The memory device includes a data storage structure disposed between a bottom electrode and a top electrode. A first interconnect via contacts an upper surface of the bottom electrode and a second interconnect via contacts an upper surface of the top electrode. An insulating structure is arranged over and along opposing outermost sidewalls of the top electrode. The bottom electrode laterally extends to different non-zero distances past opposing outermost sidewalls of the insulating structure.Type: ApplicationFiled: October 22, 2024Publication date: February 6, 2025Inventors: Chieh-Fei Chiu, Wen-Ting Chu, Yong-Shiuan Tsair, Yu-Wen Liao, Chin-Yu Mei, Po-Hao Tseng
-
Patent number: 12161056Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a memory device arranged over an etch stop material over a substrate. The memory device includes a data storage structure disposed between a bottom electrode and a top electrode. A first interconnect via contacts an upper surface of the bottom electrode and a second interconnect via contacts an upper surface of the top electrode. An interconnect wire contacts a top of the first interconnect via. A third interconnect via contacts a bottom of the interconnect wire and extends through the etch stop material to a plurality of lower interconnects below the etch stop material.Type: GrantFiled: August 25, 2021Date of Patent: December 3, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chieh-Fei Chiu, Wen-Ting Chu, Yong-Shiuan Tsair, Yu-Wen Liao, Chin-Yu Mei, Po-Hao Tseng
-
Patent number: 12148752Abstract: The present disclosure describes a method for forming (i) input/output (I/O) fin field effect transistors (FET) with polysilicon gate electrodes and silicon oxide gate dielectrics integrated and (ii) non-I/O FETs with metal gate electrodes and high-k gate dielectrics. The method includes depositing a silicon oxide layer on a first region of a semiconductor substrate and a high-k dielectric layer on a second region of the semiconductor substrate; depositing a polysilicon layer on the silicon oxide and high-k dielectric layers; patterning the polysilicon layer to form a first polysilicon gate electrode structure on the silicon oxide layer and a second polysilicon gate electrode structure on the high-k dielectric layer, where the first polysilicon gate electrode structure is wider than the second polysilicon gate electrode structure and narrower than the silicon oxide layer. The method further includes replacing the second polysilicon gate electrode structure with a metal gate electrode structure.Type: GrantFiled: July 26, 2022Date of Patent: November 19, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Meng-Han Lin, Wen-Tuo Huang, Yong-Shiuan Tsair
-
Publication number: 20240379671Abstract: The present disclosure describes a method for forming (i) input/output (I/O) fin field effect transistors (FET) with polysilicon gate electrodes and silicon oxide gate dielectrics integrated and (ii) non-I/O FETs with metal gate electrodes and high-k gate dielectrics. The method includes depositing a silicon oxide layer on a first region of a semiconductor substrate and a high-k dielectric layer on a second region of the semiconductor substrate; depositing a polysilicon layer on the silicon oxide and high-k dielectric layers; patterning the polysilicon layer to form a first polysilicon gate electrode structure on the silicon oxide layer and a second polysilicon gate electrode structure on the high-k dielectric layer, where the first polysilicon gate electrode structure is wider than the second polysilicon gate electrode structure and narrower than the silicon oxide layer. The method further includes replacing the second polysilicon gate electrode structure with a metal gate electrode structure.Type: ApplicationFiled: July 22, 2024Publication date: November 14, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Meng-Han LIN, Wen-Tuo HUANG, Yong-Shiuan TSAIR
-
Publication number: 20240373628Abstract: Various embodiments of the present application are directed towards an integrated memory chip comprising a memory array with a strap-cell architecture that reduces the number of distinct strap-cell types and that reduces strap-line density. In some embodiments, the memory array is limited to three distinct types of strap cells: a source line/erase gate (SLEG) strap cell; a control gate/word line (CGWL) strap cell; and a word-line strap cell. The small number of distinct strap-cell types simplifies design of the memory array and further simplifies design of a corresponding interconnect structure. Further, in some embodiments, the three distinct strap-cell types electrically couple word lines, erase gates, and control gates to corresponding strap lines in different metallization layers of an interconnect structure. By spreading the strap lines amongst different metallization layers, strap-line density is reduced.Type: ApplicationFiled: July 16, 2024Publication date: November 7, 2024Inventors: Wen-Tuo Huang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
-
Publication number: 20240355393Abstract: Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.Type: ApplicationFiled: July 1, 2024Publication date: October 24, 2024Inventors: Shih Kuang Yang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin
-
Patent number: 12101931Abstract: Various embodiments of the present application are directed towards an integrated memory chip comprising a memory array with a strap-cell architecture that reduces the number of distinct strap-cell types and that reduces strap-line density. In some embodiments, the memory array is limited to three distinct types of strap cells: a source line/erase gate (SLEG) strap cell; a control gate/word line (CGWL) strap cell; and a word-line strap cell. The small number of distinct strap-cell types simplifies design of the memory array and further simplifies design of a corresponding interconnect structure. Further, in some embodiments, the three distinct strap-cell types electrically couple word lines, erase gates, and control gates to corresponding strap lines in different metallization layers of an interconnect structure. By spreading the strap lines amongst different metallization layers, strap-line density is reduced.Type: GrantFiled: July 19, 2023Date of Patent: September 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wen-Tuo Huang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
-
Patent number: 12096629Abstract: Various embodiments of the present application are directed to a method for forming an integrated circuit (IC) comprising forming a multilayer film to form a plurality of memory cell structures disposed over a substrate and a plurality of memory test structures next to the memory cell structures. A memory test structure comprises a dummy control gate separated from the substrate by a dummy floating gate. The method further comprises forming a conductive floating gate test contact via along sidewalls of the dummy control gate and the dummy floating gate.Type: GrantFiled: June 29, 2023Date of Patent: September 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hung-Ling Shih, Yong-Shiuan Tsair
-
Patent number: 12068032Abstract: Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.Type: GrantFiled: May 23, 2023Date of Patent: August 20, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shih Kuang Yang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin
-
Publication number: 20240162290Abstract: An integrated chip comprises a substrate, an isolation structure and a gate structure. The isolation structure is disposed in the substrate and enclosing an active region in the substrate. The active region comprises a source region and a drain region separated by a channel region along a first direction. The gate structure is disposed over the channel region and comprising a first gate electrode region and a second gate electrode region arranged one next to another laterally along a second direction perpendicular to the first direction. The first gate electrode region has a first composition, and the second gate electrode region has a second composition different than the first composition.Type: ApplicationFiled: January 26, 2024Publication date: May 16, 2024Inventors: Meng-Han Lin, Yong-Shiuan Tsair
-
Patent number: 11968828Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor substrate and a first gate stack. An isolation feature is formed in the semiconductor substrate, and a cell region and a peripheral region adjacent to the cell region are defined in the semiconductor substrate. The first gate stack is disposed on the peripheral region of the semiconductor substrate. The first gate stack includes a first dielectric layer and a gate electrode layer disposed on the first dielectric layer and covering a top surface of the first dielectric layer. The first dielectric layer is disposed on the semiconductor substrate and has a concave profile.Type: GrantFiled: July 9, 2019Date of Patent: April 23, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Han Lin, Wen-Tuo Huang, Yong-Shiuan Tsair
-
Patent number: 11942475Abstract: The present disclosure describes a method for forming (i) input/output (I/O) fin field effect transistors (FET) with polysilicon gate electrodes and silicon oxide gate dielectrics integrated and (ii) non-I/O FETs with metal gate electrodes and high-k gate dielectrics. The method includes depositing a silicon oxide layer on a first region of a semiconductor substrate and a high-k dielectric layer on a second region of the semiconductor substrate; depositing a polysilicon layer on the silicon oxide and high-k dielectric layers; patterning the polysilicon layer to form a first polysilicon gate electrode structure on the silicon oxide layer and a second polysilicon gate electrode structure on the high-k dielectric layer, where the first polysilicon gate electrode structure is wider than the second polysilicon gate electrode structure and narrower than the silicon oxide layer. The method further includes replacing the second polysilicon gate electrode structure with a metal gate electrode structure.Type: GrantFiled: October 18, 2019Date of Patent: March 26, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Meng-Han Lin, Wen-Tuo Huang, Yong-Shiuan Tsair
-
Publication number: 20240088139Abstract: The present disclosure describes a method for forming polysilicon resistors with high-k dielectrics and polysilicon gate electrodes. The method includes depositing a resistor stack on a substrate having spaced apart first and second isolation regions. Further the method includes patterning the resistor stack to form a polysilicon resistor structure on the first isolation region and a gate structure between the first and second isolation regions, and doping the polysilicon resistor structure to form a doped layer in the polysilicon layer of the polysilicon resistor structure and source-drain regions in the substrate adjacent to the gate structure. Also, the method includes replacing the polysilicon layer in the gate structure with a metal gate electrode to form a transistor structure.Type: ApplicationFiled: November 21, 2023Publication date: March 14, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY , LTD.Inventors: Meng-Han LIN, Wen-Tuo Huang, Yong-Shiuan Tsair
-
Publication number: 20240088246Abstract: Various embodiments of the present application are directed towards a control gate layout to improve an etch process window for word lines. In some embodiments, an integrated chip comprises a memory array, an erase gate, a word line, and a control gate. The memory array comprises a plurality of cells in a plurality of rows and a plurality of columns. The erase gate and the word line are elongated in parallel along a row of the memory array. The control gate is elongated along the row and is between and borders the erase gate and the word line. Further, the control gate has a pad region protruding towards the erase gate and the word line. Because the pad region protrudes towards the erase gate and the word line, a width of the pad region is spread between word-line and erase-gate sides of the control gate.Type: ApplicationFiled: November 16, 2023Publication date: March 14, 2024Inventors: Yu-Ling Hsu, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
-
Patent number: 11923411Abstract: An integrated chip comprises a substrate, an isolation structure and a gate structure. The isolation structure is disposed in the substrate and enclosing an active region in the substrate. The active region comprises a source region and a drain region separated by a channel region along a first direction. The gate structure is disposed over the channel region and comprising a first gate electrode region and a second gate electrode region arranged one next to another laterally along a second direction perpendicular to the first direction. The first gate electrode region has a first composition, and the second gate electrode region has a second composition different than the first composition.Type: GrantFiled: January 27, 2022Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Meng-Han Lin, Yong-Shiuan Tsair
-
Publication number: 20240071455Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random access memory (FeRAM) device is over the substrate between the select gate and the first source/drain region. A transistor device is disposed on an upper surface of the substrate. The substrate has a recessed surface that is below the upper surface of the substrate and that is laterally separated from the upper surface of the substrate by a boundary isolation structure extending into a trench within the upper surface of the substrate. The FeRAM device is arranged over the recessed surface.Type: ApplicationFiled: November 10, 2023Publication date: February 29, 2024Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
-
Patent number: 11869951Abstract: Various embodiments of the present application are directed towards a control gate layout to improve an etch process window for word lines. In some embodiments, an integrated chip comprises a memory array, an erase gate, a word line, and a control gate. The memory array comprises a plurality of cells in a plurality of rows and a plurality of columns. The erase gate and the word line are elongated in parallel along a row of the memory array. The control gate is elongated along the row and is between and borders the erase gate and the word line. Further, the control gate has a pad region protruding towards the erase gate and the word line. Because the pad region protrudes towards the erase gate and the word line, a width of the pad region is spread between word-line and erase-gate sides of the control gate.Type: GrantFiled: August 31, 2021Date of Patent: January 9, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Ling Hsu, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
-
Patent number: 11869564Abstract: The present disclosure relates to an integrated chip structure. The integrated chip structure includes a first source/drain region and a second source/drain region disposed within a substrate. A select gate is disposed over the substrate between the first source/drain region and the second source/drain region. A ferroelectric random-access memory (FeRAM) device is disposed over the substrate between the select gate and the first source/drain region. A first sidewall spacer, including one or more dielectric materials, is arranged laterally between the select gate and the FeRAM device. An inter-level dielectric (ILD) structure laterally surrounds the FeRAM device and the select gate and vertically overlies a top surface of the first sidewall spacer.Type: GrantFiled: July 18, 2022Date of Patent: January 9, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair