Patents by Inventor Yong-Shiuan Tsair
Yong-Shiuan Tsair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11004858Abstract: A semiconductor device includes a non-volatile memory and a logic circuit. The non-volatile memory includes a stacked structure comprising a first insulating layer, a floating gate, a second insulating layer, a control gate and a third insulating layer stacked in this order from a substrate; an erase gate line; and a word line. The logic circuit includes a field effect transistor comprising a gate electrode. The word line includes a protrusion, and a height of the protrusion from the substrate is higher than a height of the erase gate line from the substrate. The word line and the gate electrode are formed of polysilicon.Type: GrantFiled: March 29, 2019Date of Patent: May 11, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Tsun-Kai Tsao, Hung-Ling Shih, Po-Wei Liu, Shun-Shing Yang, Wen-Tuo Huang, Yong-Shiuan Tsair, S. K. Yang
-
Publication number: 20210118876Abstract: The present disclosure describes a method for forming (i) input/output (I/O) fin field effect transistors (FET) with polysilicon gate electrodes and silicon oxide gate dielectrics integrated and (ii) non-I/O FETs with metal gate electrodes and high-k gate dielectrics. The method includes depositing a silicon oxide layer on a first region of a semiconductor substrate and a high-k dielectric layer on a second region of the semiconductor substrate; depositing a polysilicon layer on the silicon oxide and high-k dielectric layers; patterning the polysilicon layer to form a first polysilicon gate electrode structure on the silicon oxide layer and a second polysilicon gate electrode structure on the high-k dielectric layer, where the first polysilicon gate electrode structure is wider than the second polysilicon gate electrode structure and narrower than the silicon oxide layer. The method further includes replacing the second polysilicon gate electrode structure with a metal gate electrode structure.Type: ApplicationFiled: October 18, 2019Publication date: April 22, 2021Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Han LIN, Wen-Tuo HUANG, Yong-Shiuan TSAIR
-
Publication number: 20210111339Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a lower inter-level dielectric (ILD) structure surrounding a plurality of lower interconnect layers over a substrate. An etch stop material is disposed over the lower ILD structure. A bottom electrode is arranged over an upper surface of the etch stop material, a data storage structure is disposed on an upper surface of the bottom electrode and is configured to store a data state, and a top electrode is disposed on an upper surface of the data storage structure. A first interconnect via contacts the upper surface the bottom electrode and a second interconnect via contacts the top electrode.Type: ApplicationFiled: October 15, 2019Publication date: April 15, 2021Inventors: Chieh-Fei Chiu, Wen-Ting Chu, Yong-Shiuan Tsair, Yu-Wen Liao, Chin-Yu Mei, Po-Hao Tseng
-
Patent number: 10978463Abstract: A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate, a second dielectric layer disposed between the floating gate and the control gate, sidewall spacers disposed on opposing sides of a stacked structure including the floating gate, the second dielectric layer and the control gate, and an erase gate and a select gate disposed on sides of the stacked structure, respectively. An upper surface of the erase gate and one of the sidewall spacers in contact with the erase gate form an angle ?1 at a contact point of the upper surface of the erase gate and the one of the sidewall spacers, where 90°<?1<115° measured from the upper surface of the erase gate.Type: GrantFiled: January 21, 2020Date of Patent: April 13, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: ShihKuang Yang, Yong-Shiuan Tsair, Po-Wei Liu, Hung-Ling Shih, Yu-Ling Hsu, Chieh-Fei Chiu, Wen-Tuo Huang
-
Publication number: 20210074360Abstract: Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.Type: ApplicationFiled: November 19, 2020Publication date: March 11, 2021Inventors: Shih Kuang Yang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin
-
Patent number: 10943913Abstract: Various embodiments of the present application are directed towards an integrated memory chip comprising a memory array with a strap-cell architecture that reduces the number of distinct strap-cell types and that reduces strap-line density. In some embodiments, the memory array is limited to three distinct types of strap cells: a source line/erase gate (SLEG) strap cell; a control gate/word line (CGWL) strap cell; and a word-line strap cell. The small number of distinct strap-cell types simplifies design of the memory array and further simplifies design of a corresponding interconnect structure. Further, in some embodiments, the three distinct strap-cell types electrically couple word lines, erase gates, and control gates to corresponding strap lines in different metallization layers of an interconnect structure. By spreading the strap lines amongst different metallization layers, strap-line density is reduced.Type: GrantFiled: March 26, 2019Date of Patent: March 9, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wen-Tuo Huang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang
-
Publication number: 20210057406Abstract: The present disclosure describes a method for forming polysilicon resistors with high-k dielectrics and polysilicon gate electrodes. The method includes depositing a resistor stack on a substrate haying spaced apart first and second isolation regions. Further the method includes patterning the resistor stack to form a polysilicon resistor structure on the first isolation region and a gate structure between the first and second isolation regions, and doping the polysilicon resistor structure to form a doped layer in the polysilicon layer of the polysilicon resistor structure and source-drain regions in the substrate adjacent to the gate structure. Also, the method includes replacing the polysilicon layer in the gate structure with a metal gate electrode to form a transistor structure.Type: ApplicationFiled: August 23, 2019Publication date: February 25, 2021Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Meng-Han LIN, Wen-Tuo HUANG, Yong-Shiuan TSAIR
-
Patent number: 10930333Abstract: In some embodiments, the present disclosure relates to a memory structure. The memory structure has a source region and a drain region disposed within a substrate. A select gate disposed over the substrate between the source region and the drain region. A ferroelectric random access memory (FeRAM) device is disposed over the substrate between the select gate and the source region. The FeRAM device includes a ferroelectric material arranged between the substrate and a conductive electrode.Type: GrantFiled: February 5, 2019Date of Patent: February 23, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
-
Publication number: 20210013220Abstract: A semiconductor device is provided. The semiconductor device includes a semiconductor substrate and a first gate stack. An isolation feature is formed in the semiconductor substrate, and a cell region and a peripheral region adjacent to the cell region are defined in the semiconductor substrate. The first gate stack is disposed on the peripheral region of the semiconductor substrate. The first gate stack includes a first dielectric layer and a gate electrode layer disposed on the first dielectric layer and covering a top surface of the first dielectric layer. The first dielectric layer is disposed on the semiconductor substrate and has a concave profile.Type: ApplicationFiled: July 9, 2019Publication date: January 14, 2021Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Han LIN, Wen-Tuo HUANG, Yong-Shiuan TSAIR
-
Patent number: 10879250Abstract: A method for forming a semiconductor structure includes providing a substrate including a plurality of first isolation structures formed therein, wherein the first isolation structures are protruded from a surface of the substrate; conformally forming a semiconductor layer over the substrate and the first isolation structures; forming a sacrificial layer over the semiconductor layer to form a planar surface over the substrate; and removing the sacrificial layer, a portion of the semiconductor layer and a portion of each first isolation structure to form at least one first gate structure using a same etchant.Type: GrantFiled: August 29, 2017Date of Patent: December 29, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Hung-Ling Shih, Yong-Shiuan Tsair, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Chieh-Fei Chiu
-
Patent number: 10861553Abstract: Various embodiments of the present application are directed towards an integrated memory chip with an enhanced device-region layout for reduced leakage current and an enlarged word-line etch process window (e.g., enhanced word-line etch resiliency). In some embodiments, the integrated memory chip comprises a substrate, a control gate, a word line, and an isolation structure. The substrate comprises a first source/drain region. The control gate and the word line are on the substrate. The word line is between and borders the first source/drain region and the control gate and is elongated along a length of the word line. The isolation structure extends into the substrate and has a first isolation-structure sidewall. The first isolation-structure sidewall extends laterally along the length of the word line and underlies the word line.Type: GrantFiled: May 1, 2019Date of Patent: December 8, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih Kuang Yang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin
-
Publication number: 20200381443Abstract: Various embodiments of the present application are directed to an integrated circuit (IC) comprising a floating gate test device, as well as a method for forming the IC. In some embodiments, the IC comprises a memory region and a logic region integrated in a substrate. A memory cell structure is disposed on the memory region, and logic device is disposed on the logic region. A memory test structure is disposed at a periphery of the memory cell structure. The memory test structure includes a pair of dummy control gates respectively separated from the substrate by a pair of dummy floating gates and a pair of dummy select gate electrodes disposed on opposite sides of the pair of dummy control gates. The memory test structure further includes a pair of conductive floating gate test contact vias respectively extending through the pair of dummy control gate and reaching on the dummy floating gate.Type: ApplicationFiled: December 19, 2019Publication date: December 3, 2020Inventors: Hung-Ling Shih, Yong-Shiuan Tsair
-
Publication number: 20200365655Abstract: A memory device includes a first bottom electrode, a first memory stack, and a second memory stack. The first bottom electrode has a first portion and a second portion connected to the first portion. The first memory stack is over the first portion of the first bottom electrode. The first memory stack includes a first resistive switching element and a first top electrode over the first resistive switching element. The second memory stack is over the second portion of the first bottom electrode. The second memory stack comprises a second resistive switching element and a second top electrode over the second resistive switching element.Type: ApplicationFiled: May 16, 2019Publication date: November 19, 2020Inventors: Chieh-Fei CHIU, Yong-Shiuan TSAIR, Wen-Ting CHU, Yu-Wen LIAO, Chin-Yu MEI, Po-Hao TSENG
-
Patent number: 10763270Abstract: A method for forming an integrated circuit (IC) and an IC are disclosed. The method for forming the IC includes: forming an isolation structure separating a memory semiconductor region from a logic semiconductor region; forming a memory cell structure on the memory semiconductor region; forming a memory capping layer covering the memory cell structure and the logic semiconductor region; performing a first etch into the memory capping layer to remove the memory capping layer from the logic semiconductor region, and to define a slanted, logic-facing sidewall on the isolation structure; forming a logic device structure on the logic semiconductor region; and performing a second etch into the memory capping layer to remove the memory capping layer from the memory semiconductor, while leaving a dummy segment of the memory capping layer that defines the logic-facing sidewall.Type: GrantFiled: April 27, 2018Date of Patent: September 1, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Wen-Ting Chu, Yong-Shiuan Tsair
-
Publication number: 20200219892Abstract: In some embodiments, a method for forming a semiconductor device is provided. The method includes forming a pad stack over a semiconductor substrate, where the pad stack includes a lower pad layer and an upper pad layer. An isolation structure having a pair of isolation segments separated in a first direction by the pad stack is formed in the semiconductor substrate. The upper pad is removed to form an opening, where the isolation segments respectively have opposing sidewalls in the opening that slant at a first angle. A first etch is performed that partially removes the lower pad layer and isolation segments in the opening so the opposing sidewalls slant at a second angle greater than the first angle. A second etch is performed to round the opposing sidewalls and remove the lower pad layer from the opening. A floating gate is formed in the opening.Type: ApplicationFiled: March 18, 2020Publication date: July 9, 2020Inventors: Hung-Ling Shih, Chieh-Fei Chiu, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Shih Kuang Yang
-
Publication number: 20200194266Abstract: A method of manufacturing a non-volatile memory semiconductor device includes forming a plurality of memory cells on a non-volatile memory cell area of a semiconductor substrate, and forming a conductive layer over the plurality of memory cells. A first planarization layer of a planarization material having a viscosity of less than about 1.2 centipoise is formed over the plurality of memory cells. A planarization operation is performed on the first planarization layer and the conductive layer, thereby removing an upper region of the first planarization layer and an upper region of the conductive layer. Portions of a lower region of the conductive layer are completely removed between the memory cells.Type: ApplicationFiled: December 16, 2019Publication date: June 18, 2020Inventors: Yu-Ling HSU, Hung-Ling SHIH, Chieh-Fei CHIU, Po-Wei LIU, Wen-Tuo HUANG, Yong-Shiuan TSAIR, Shihkuang YANG
-
Patent number: 10680002Abstract: In some embodiments, a method for forming a semiconductor device is provided. The method includes forming a pad stack over a semiconductor substrate, where the pad stack includes a lower pad layer and an upper pad layer. An isolation structure having a pair of isolation segments separated in a first direction by the pad stack is formed in the semiconductor substrate. The upper pad is removed to form an opening, where the isolation segments respectively have opposing sidewalls in the opening that slant at a first angle. A first etch is performed that partially removes the lower pad layer and isolation segments in the opening so the opposing sidewalls slant at a second angle greater than the first angle. A second etch is performed to round the opposing sidewalls and remove the lower pad layer from the opening. A floating gate is formed in the opening.Type: GrantFiled: May 16, 2018Date of Patent: June 9, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Ling Shih, Chieh-Fei Chiu, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Yong-Shiuan Tsair, Shih Kuang Yang
-
Publication number: 20200161317Abstract: A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate, a second dielectric layer disposed between the floating gate and the control gate, sidewall spacers disposed on opposing sides of a stacked structure including the floating gate, the second dielectric layer and the control gate, and an erase gate and a select gate disposed on sides of the stacked structure, respectively. An upper surface of the erase gate and one of the sidewall spacers in contact with the erase gate form an angle ?1 at a contact point of the upper surface of the erase gate and the one of the sidewall spacers, where 90°<?1 <115° measured from the upper surface of the erase gate.Type: ApplicationFiled: January 21, 2020Publication date: May 21, 2020Inventors: ShihKuang YANG, Yong-Shiuan TSAIR, Po-Wei LIU, Hung-Ling SHIH, Yu-Ling HSU, Chieh-Fei CHIU, Wen-Tuo HUANG
-
Publication number: 20200135851Abstract: An integrated chip comprises a substrate, an isolation structure and a gate structure. The isolation structure comprises one or more dielectric materials within the substrate and has sidewalls defining an active region in the substrate. The active region has a channel region, a source region, and a drain region separated from the source region by the channel region along a first direction. The source, drain and channel regions respectively have first, second and third widths along a second direction perpendicular to the first direction. The third width is larger than the first and second widths. The gate structure comprises a first gate electrode region having a first composition of one or more materials and a second gate electrode region having a second composition of one or more materials different than the first composition of one or more materials.Type: ApplicationFiled: December 12, 2018Publication date: April 30, 2020Inventors: Meng-Han Lin, Yong-Shiuan Tsair
-
Publication number: 20200105775Abstract: Various embodiments of the present application are directed towards an integrated memory chip comprising a memory array with a strap-cell architecture that reduces the number of distinct strap-cell types and that reduces strap-line density. In some embodiments, the memory array is limited to three distinct types of strap cells: a source line/erase gate (SLEG) strap cell; a control gate/word line (CGWL) strap cell; and a word-line strap cell. The small number of distinct strap-cell types simplifies design of the memory array and further simplifies design of a corresponding interconnect structure. Further, in some embodiments, the three distinct strap-cell types electrically couple word lines, erase gates, and control gates to corresponding strap lines in different metallization layers of an interconnect structure. By spreading the strap lines amongst different metallization layers, strap-line density is reduced.Type: ApplicationFiled: March 26, 2019Publication date: April 2, 2020Inventors: Wen-Tuo Huang, Ping-Cheng Li, Hung-Ling Shih, Po-Wei Liu, Yu-Ling Hsu, Yong-Shiuan Tsair, Chia-Sheng Lin, Shih Kuang Yang