Patents by Inventor Yongjun Jeff Hu

Yongjun Jeff Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160218282
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20160211324
    Abstract: Some embodiments include a device having an n-type diffusion region, and having a boron-doped region within the n-type diffusion region. The boron-doped region extends no deeper than about 10 nanometers from an upper surface of the n-type diffusion region. Some embodiments include a method in which first boron-enhanced regions are formed within upper portions of n-type source/drain regions of an NMOS (n-type metal-oxide-semiconductor) device and second boron-enhanced regions are simultaneously formed within upper portions of p-type source/drain regions of a PMOS (p-type metal-oxide-semiconductor) device. The first and second boron-enhanced regions extend to depths of less than or equal to about 10 nanometers.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 21, 2016
    Inventors: Shu Qin, Yongjun Jeff Hu, Allen McTeer
  • Patent number: 9396952
    Abstract: Some embodiments include methods of forming charge storage transistor gates and standard FET gates in which common processing is utilized for fabrication of at least some portions of the different types of gates. FET and charge storage transistor gate stacks may be formed. The gate stacks may each include a gate material, an insulative material, and a sacrificial material. The sacrificial material is removed from the FET and charge storage transistor gate stacks. The insulative material of the FET gate stacks is etched through. A conductive material is formed over the FET gate stacks and over the charge storage transistor gate stacks. The conductive material physically contacts the gate material of the FET gate stacks, and is separated from the gate material of the charge storage transistor gate stacks by the insulative material remaining in the charge storage transistor gate stacks. Some embodiments include gate structures.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: July 19, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Publication number: 20160204205
    Abstract: Various embodiments include methods and apparatuses comprising methods for formation of and apparatuses including a source material for electronic devices. One such apparatus includes a vertical string of memory cells comprising a plurality of alternating levels of conductor and dielectric material, a semiconductor material extending through the plurality of alternating levels of conductor material and dielectric material, and a source material coupled to the semiconductor material. The source material includes a titanium nitride layer and a source polysilicon layer in direct contact with the titanium nitride layer. Other methods and apparatuses are disclosed.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 14, 2016
    Inventors: John Mark Meldrim, Yushi Hu, Yongjun Jeff Hu, Everett Allen McTeer
  • Patent number: 9385317
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: July 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160190209
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20160155619
    Abstract: Forming memory using high power impulse magnetron sputtering is described herein. One or more method embodiments include forming a resistive memory material on a structure using high power impulse magnetron sputtering (HIPIMS), wherein the resistive memory material is formed on the structure in an environment having a temperature of approximately 400 degrees Celsius or less.
    Type: Application
    Filed: January 4, 2016
    Publication date: June 2, 2016
    Inventors: Yongjun Jeff Hu, Everett A. McTeer, John A. Smythe, III, Gurtej S. Sandhu
  • Patent number: 9306159
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: April 5, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20160093688
    Abstract: A multilayer source provides charge carriers to a multitier channel connector. The source includes a metal silicide layer on a substrate and a metal nitride layer between the metal silicide layer and the channel. The metal silicide and the metal nitride are processed without an intervening oxide layer between them. In one embodiment, the source further includes a silicon layer between the metal nitride layer and the channel. The silicon layer can also be processed without an intervening oxide layer. Thus, the source does not have an intervening oxide layer from the substrate to the channel.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: John Mark Meldrim, Yushi Hu, Yongjun Jeff Hu, Everett Allen McTeer
  • Patent number: 9299767
    Abstract: A multilayer source provides charge carriers to a multitier channel connector. The source includes a metal silicide layer on a substrate and a metal nitride layer between the metal silicide layer and the channel. The metal silicide and the metal nitride are processed without an intervening oxide layer between them. In one embodiment, the source further includes a silicon layer between the metal nitride layer and the channel. The silicon layer can also be processed without an intervening oxide layer. Thus, the source does not have an intervening oxide layer from the substrate to the channel.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: March 29, 2016
    Assignee: INTEL CORPORATION
    Inventors: John Mark Meldrim, Yushi Hu, Yongjun Jeff Hu, Everett Allen McTeer
  • Patent number: 9281471
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 8, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20160064666
    Abstract: A memory cell comprising a threshold switching material over a first electrode on a substrate. The memory cell includes a second electrode over the threshold switching material and at least one dielectric material between the threshold switching material and at least one of the first electrode and the second electrode. A memory material overlies the second electrode. The dielectric material may directly contact the threshold switching material and each of the first electrode and the second electrode. Memory cells including only one dielectric material between the threshold switching material and an electrode are disclosed. A memory device including the memory cells and methods of forming the memory cells are also described.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Tsz W. Chan, D.V. Nirmal Ramaswamy, Qian Tao, Yongjun Jeff Hu, Everett A. McTeer
  • Patent number: 9257646
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: February 9, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Publication number: 20160035974
    Abstract: Some embodiments include a memory cell having a first electrode, and an intermediate material over and directly against the first electrode. The intermediate material includes stabilizing species corresponding to one or both of carbon and boron. The memory cell also has a switching material over and directly against the intermediate material, an ion reservoir material over the switching material, and a second electrode over the ion reservoir material. Some embodiments include methods of forming memory cells.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Martin Schubert, Shu Qin, Scott E. Sills, Durai Vishak Nirmal Ramaswamy, Allen McTeer, Yongjun Jeff Hu
  • Patent number: 9249498
    Abstract: Forming memory using high power impulse magnetron sputtering is described herein. One or more method embodiments include forming a resistive memory material on a structure using high power impulse magnetron sputtering (HIPIMS), wherein the resistive memory material is formed on the structure in an environment having a temperature of approximately 400 degrees Celsius or less.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 2, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Everett A. McTeer, John A. Smythe, III, Gurtej S. Sandhu
  • Publication number: 20150357334
    Abstract: An array includes vertically-oriented transistors, rows of access lines, and columns of data/sense lines. Individual of the rows include an access line interconnecting transistors in that row. Individual of the columns include a data/sense line interconnecting transistors in that column. The data/sense line has silicon-comprising semiconductor material between the transistors in that column that is conductively-doped n-type with at least one of As and Sb. The conductively-doped semiconductor material of the data/sense line includes a conductivity-neutral dopant between the transistors in that column. Methods are disclosed.
    Type: Application
    Filed: August 19, 2015
    Publication date: December 10, 2015
    Inventors: Yongjun Jeff Hu, Allen McTeer
  • Publication number: 20150318467
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Swapnil Lengade, Everett Allen McTeer, Shu Qin
  • Publication number: 20150318468
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming the memory stack out of a plurality of elements. An adhesion species is formed on at least one sidewall of the memory stack wherein the adhesion species has a gradient structure that results in the adhesion species intermixing with an element of the memory stack to terminate unsatisfied atomic bonds of the element. The gradient structure further comprises a film of the adhesion species on an outer surface of the at least one sidewall. A dielectric material is implanted into the film of the adhesion species to form a sidewall liner.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Tsz W. Chan, Yongjun Jeff Hu, Swapnil Lengade, Shu Qin, Everett Allen McTeer
  • Publication number: 20150318038
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming a memory stack out of a plurality of elements. A sidewall liner is formed on a sidewall of the memory stack using a physical vapor deposition (PVD) process, including an adhesion species and a dielectric, such that the adhesion species intermixes with an element of the memory stack to terminate unsatisfied atomic bonds of the element and the dielectric forms a dielectric film with the adhesive species on the sidewall.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Christopher W. Petz, Everett Allen McTeer
  • Patent number: 9129896
    Abstract: An array includes vertically-oriented transistors, rows of access lines, and columns of data/sense lines. Individual of the rows include an access line interconnecting transistors in that row. Individual of the columns include a data/sense line interconnecting transistors in that column. The data/sense line has silicon-comprising semiconductor material between the transistors in that column that is conductively-doped n-type with at least one of As and Sb. The conductively-doped semiconductor material of the data/sense line includes a conductivity-neutral dopant between the transistors in that column. Methods are disclosed.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 8, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Allen McTeer