Patents by Inventor Yonglin Xie

Yonglin Xie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200086629
    Abstract: A drop ejector array device includes a first plurality and a second plurality of drop ejectors that are alternatingly disposed along an array direction on the substrate surface. A voltage input terminal and a current return terminal are disposed on the substrate surface. A first power bus line connects the first plurality to the voltage input terminal. A second power bus line connects the second plurality to the voltage input terminal. The second power bus line is electrically connected to the first power bus line by a primary power bus connector line. A first current return bus line connects the first plurality to the current return terminal. A second current return bus line connects the second plurality to the current return terminal. The second current return bus line is electrically connected to the first current return bus line by a primary current return bus connector line.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 19, 2020
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 10525721
    Abstract: A drop ejection system includes a working fluid source containing a working fluid, an ink source containing an ink that is immiscible with the working fluid, and at least one drop ejector array module. Each drop ejector array module includes a substrate and an array of drop ejectors disposed on the substrate. Each drop ejector includes a nozzle; an ink inlet connected to the ink source; a working fluid inlet connected to the working fluid source; a pressure chamber in fluidic communication with the nozzle, the ink inlet, and the working fluid inlet; and a heating element configured to selectively vaporize a portion of the working fluid to pressurize the pressure chamber for ejecting ink drops through the nozzle.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: January 7, 2020
    Assignee: RF PRINTING TECHNOLOGIES
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20190217616
    Abstract: A hierarchically aligned inkjet printhead includes a plurality of printhead units and a base holding the printhead units. Each printhead unit includes a plurality of drop ejector array devices, each of which includes at least one drop ejector array; a first butting edge having a first mechanical alignment feature; and a second butting edge having a second mechanical alignment feature. Each printhead unit includes an ink manifold that is fluidically connected to each of the plurality of drop ejector array devices in the printhead unit; and a mounting member to which the drop ejector array devices are affixed. A pair of opposing alignment edges of each printhead unit are substantially parallel to the butting edges of the drop ejector array devices. A first of the opposing alignment edges includes an outwardly-extending projection, and a second of the opposing alignment edges includes a niche that is substantially complementary to the projection.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 18, 2019
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 10336074
    Abstract: A hierarchically aligned inkjet printhead includes a plurality of printhead units and a base holding the printhead units. Each printhead unit includes a plurality of drop ejector array devices, each of which includes at least one drop ejector array; a first butting edge having a first mechanical alignment feature; and a second butting edge having a second mechanical alignment feature. Each printhead unit includes an ink manifold that is fluidically connected to each of the plurality of drop ejector array devices in the printhead unit; and a mounting member to which the drop ejector array devices are affixed. A pair of opposing alignment edges of each printhead unit are substantially parallel to the butting edges of the drop ejector array devices. A first of the opposing alignment edges includes an outwardly-extending projection, and a second of the opposing alignment edges includes a niche that is substantially complementary to the projection.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 2, 2019
    Assignee: RF PRINTING TECHNOLOGIES
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20190105907
    Abstract: An inkjet printing system includes an printhead with a nozzle face having nozzles arranged along an array direction. A pressure source is configured to provide a positive or negative pressure to an ink source. A valve is fluidically connected between the ink source and the inkjet printhead. A cleaning station is configured to confront the nozzle face across a gap. The cleaning station includes a cleaning fluid dispenser for dispensing cleaning fluid onto the nozzle face. The cleaning station includes a waste fluid collector having a vacuum inlet that is displaced from the cleaning fluid dispenser in a first direction for collecting dispensed cleaning fluid. The cleaning station includes a blower that is displaced from the cleaning fluid dispenser in a second direction opposite to the first direction. The blower is configured to direct a gas stream along the nozzle face to move dispensed cleaning fluid toward the vacuum inlet.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20190100023
    Abstract: A drop ejection system includes a working fluid source containing a working fluid, an ink source containing an ink that is immiscible with the working fluid, and at least one drop ejector array module. Each drop ejector array module includes a substrate and an array of drop ejectors disposed on the substrate. Each drop ejector includes a nozzle; an ink inlet connected to the ink source; a working fluid inlet connected to the working fluid source; a pressure chamber in fluidic communication with the nozzle, the ink inlet, and the working fluid inlet; and a heating element configured to selectively vaporize a portion of the working fluid to pressurize the pressure chamber for ejecting ink drops through the nozzle.
    Type: Application
    Filed: November 5, 2018
    Publication date: April 4, 2019
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 10179454
    Abstract: An inkjet printing system includes an printhead with a nozzle face having nozzles arranged along an array direction. A pressure source is configured to provide a positive or negative pressure to an ink source. A valve is fluidically connected between the ink source and the inkjet printhead. A cleaning station is configured to confront the nozzle face across a gap. The cleaning station includes a cleaning fluid dispenser for dispensing cleaning fluid onto the nozzle face. The cleaning station includes a waste fluid collector having a vacuum inlet that is displaced from the cleaning fluid dispenser in a first direction for collecting dispensed cleaning fluid. The cleaning station includes a blower that is displaced from the cleaning fluid dispenser in a second direction opposite to the first direction. The blower is configured to direct a gas stream along the nozzle face to move dispensed cleaning fluid toward the vacuum inlet.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 15, 2019
    Assignee: RF PRINTING TECHNOLOGIES
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 10166769
    Abstract: An inkjet printhead includes a two-dimensional array of drop ejectors arranged as a plurality of columns, each column including a plurality of banks, and each bank including a plurality of groups that each include a plurality of drop ejectors. The drop ejectors in each group are substantially aligned along a first direction. The groups in each bank are spaced from each other along the first direction and are offset from each other along a second direction. The banks in each column are spaced from each other along the first direction and are offset from each other along the second direction. The columns are offset from each other along the second direction. The two-dimensional array has a width W along the first direction and a length L greater than W along the second direction. Each drop ejector includes a nozzle, an ink inlet, a pressure chamber and an actuator.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: January 1, 2019
    Assignee: RF Printing Technologies LLC
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 10155384
    Abstract: A drop ejection system includes a working fluid source containing a working fluid, an ink source containing an ink that is immiscible with the working fluid, and at least one drop ejector array module. Each drop ejector array module includes a substrate and an array of drop ejectors disposed on the substrate. Each drop ejector includes a nozzle; an ink inlet connected to the ink source; a working fluid inlet connected to the working fluid source; a pressure chamber in fluidic communication with the nozzle, the ink inlet, and the working fluid inlet; and a heating element configured to selectively vaporize a portion of the working fluid to pressurize the pressure chamber for ejecting ink drops through the nozzle.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: December 18, 2018
    Assignee: RF Printing Technologies LLC
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20180304635
    Abstract: An inkjet printing system includes an printhead with a nozzle face having nozzles arranged along an array direction. A pressure source is configured to provide a positive or negative pressure to an ink source. A valve is fluidically connected between the ink source and the inkjet printhead. A cleaning station is configured to confront the nozzle face across a gap. The cleaning station includes a cleaning fluid dispenser for dispensing cleaning fluid onto the nozzle face. The cleaning station includes a waste fluid collector having a vacuum inlet that is displaced from the cleaning fluid dispenser in a first direction for collecting dispensed cleaning fluid. The cleaning station includes a blower that is displaced from the cleaning fluid dispenser in a second direction opposite to the first direction. The blower is configured to direct a gas stream along the nozzle face to move dispensed cleaning fluid toward the vacuum inlet.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20180236764
    Abstract: A drop ejection system includes a working fluid source containing a working fluid, an ink source containing an ink that is immiscible with the working fluid, and at least one drop ejector array module. Each drop ejector array module includes a substrate and an array of drop ejectors disposed on the substrate. Each drop ejector includes a nozzle; an ink inlet connected to the ink source; a working fluid inlet connected to the working fluid source; a pressure chamber in fluidic communication with the nozzle, the ink inlet, and the working fluid inlet; and a heating element configured to selectively vaporize a portion of the working fluid to pressurize the pressure chamber for ejecting ink drops through the nozzle.
    Type: Application
    Filed: February 20, 2017
    Publication date: August 23, 2018
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 9981465
    Abstract: An inkjet printing system includes a drop ejector array module having a temperature sensor and a logic circuit for sequentially selecting one or more drop ejectors in the array. The system also includes an image data source for providing an image data signal, a memory for storing a temperature correction factor, and a memory for storing at least one drop ejector correction factor. The system includes a fire pulse generator configured to receive signals corresponding to the temperature sensor, the temperature correction factor and the at least one drop ejector correction factor and to output a fire pulse waveform. Also included is a heating pulse generator configured to receive signals corresponding to the temperature sensor and the temperature correction factor and to output a heating pulse waveform. A waveform selector is provided for selecting either a fire pulse waveform or a heating pulse waveform based on the image data signal.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: May 29, 2018
    Assignee: RF Printing Technologies LLC
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 9862187
    Abstract: An inkjet printing system includes at least one drop ejector array module having an array of drop ejectors disposed on a substrate. A primary temperature sensor is located near a first set of drop ejectors. At least one secondary temperature sensor is located near a second set of drop ejectors. Temperature comparison circuitry on the substrate is configured to compare signals from the primary temperature sensor and the at least one secondary temperature sensor. Pulse modification circuitry on the substrate is electrically connected to the temperature comparison circuitry and is configured to modify an input pulse waveform. The inkjet printing system also includes a controller that is electrically connected to the primary temperature sensor via a temperature output pad and to the pulse modification circuitry via a pulse waveform input pad.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: January 9, 2018
    Assignee: RF Printing Technologies LLC
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20170355190
    Abstract: An inkjet printhead includes a two-dimensional array of drop ejectors arranged as a plurality of columns, each column including a plurality of banks, and each bank including a plurality of groups that each include a plurality of drop ejectors. The drop ejectors in each group are substantially aligned along a first direction. The groups in each bank are spaced from each other along the first direction and are offset from each other along a second direction. The banks in each column are spaced from each other along the first direction and are offset from each other along the second direction. The columns are offset from each other along the second direction. The two-dimensional array has a width W along the first direction and a length L greater than W along the second direction.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 14, 2017
    Inventors: Richard Mu, Yonglin Xie
  • Publication number: 20170355189
    Abstract: A method of printing an image with a printhead having spatially offset groups of drop ejectors, each group having a plurality of drop ejectors that are aligned substantially along a scan direction, includes enabling simultaneous firing of drop ejectors that are corresponding members of a first set of groups. Drop ejectors within each group of the first set are sequentially fired until each member of each group has had opportunity to fire. Corresponding drop ejectors of a second set of groups are simultaneously fired, and drop ejectors within each group of the second set are sequentially fired. Any additional groups of drop ejectors are likewise fired until all drop ejectors have had opportunity to fire during a first stroke. Drop ejectors are fired in subsequent strokes similar to the first stroke as the recording medium is moved relative to the printhead along the scan direction until printing is completed.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 14, 2017
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 9840075
    Abstract: A method of printing an image with a printhead having spatially offset groups of drop ejectors, each group having a plurality of drop ejectors that are aligned substantially along a scan direction, includes enabling simultaneous firing of drop ejectors that are corresponding members of a first set of groups. Drop ejectors within each group of the first set are sequentially fired until each member of each group has had opportunity to fire. Corresponding drop ejectors of a second set of groups are simultaneously fired, and drop ejectors within each group of the second set are sequentially fired. Any additional groups of drop ejectors are likewise fired until all drop ejectors have had opportunity to fire during a first stroke. Drop ejectors are fired in subsequent strokes similar to the first stroke as the recording medium is moved relative to the printhead along the scan direction until printing is completed.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: December 12, 2017
    Assignee: RF Printing Technologies LLC
    Inventors: Richard Mu, Yonglin Xie
  • Patent number: 9174438
    Abstract: A printhead includes a jetting module that forms liquid drops travelling along a first path. A deflection mechanism causes selected liquid drops formed by the jetting module to deviate from the first path and begin travelling along a second path. A catcher includes a stationary porous surface. A liquid film flows over the stationary porous surface of the catcher. The catcher is positioned relative to the first path such that the liquid drops travelling along one of the first path and the second path contact the liquid film.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: November 3, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Yonglin Xie, Qing Yang, Roger S. Kerr, Chang-Fang Hsu
  • Patent number: 9168740
    Abstract: A printhead includes a nozzle plate including a plurality of nozzles and a plurality of liquid chambers. Each liquid chamber is in fluid communication with a respective one of the plurality of nozzles. An acoustic dampening structure includes a plurality of sets of air pockets and liquid flow restrictors. Each liquid chamber is in fluid communication with one of the sets of air pockets and liquid flow restrictors. A common liquid supply manifold is in fluid communication with each liquid chamber through the liquid flow restrictor associated with the liquid chamber.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: October 27, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Yonglin Xie, Qing Yang, John A. Lebens
  • Patent number: 9162454
    Abstract: A printhead includes a plurality of liquid channels and a nozzle plate. The nozzle plate includes a plurality of nozzles and an acoustic dampening structure. The acoustic dampening structure includes a plurality of sets of air pockets and liquid flow restrictors. Each set of air pockets and liquid flow restrictors is in fluid communication with a respective one of the plurality of nozzles. Each liquid channel is in fluid communication with the respective one of the plurality of nozzles through the associated liquid flow restrictor. A common liquid supply manifold is in fluid communication with the plurality of liquid chambers.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: October 20, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Yonglin Xie, Qing Yang, John A. Lebens
  • Patent number: 8919930
    Abstract: A jetting module includes a nozzle plate, a thermal stimulation membrane, and an enclosure. Portions of the nozzle plate define a nozzle. The thermal stimulation membrane includes a plurality of pores. The enclosure extends from the nozzle towards the thermal stimulation membrane to define a liquid chamber positioned between the nozzle and the thermal stimulation membrane. The liquid chamber is in fluid communication with each of the nozzle and the plurality of pores. The liquid chamber is spanned by a portion of the thermal stimulation membrane. A source provides a liquid under pressure through the thermal stimulation member with the pressure being sufficient to jet a stream of the liquid through the nozzle after the liquid flows through the thermal stimulation membrane.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: December 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Michael F. Baumer, Yonglin Xie, Ali G. Lopez