Patents by Inventor Yoshiaki Toyoda

Yoshiaki Toyoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9362118
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n?semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: June 7, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yoshiaki Toyoda, Akio Kitamura
  • Patent number: 9318433
    Abstract: A low cost, small scale semiconductor device including a trimming circuit having a fuse resistor is disclosed. By a trimming circuit being configured of a MOSFET, a protection circuit, and a fuse resistor, it is possible to carry out a change from an open circuit state to a short circuit state by fusing the fuse resistor. Also, by the protection circuit and fuse resistor configuring the trimming circuit being formed in a two layer structure, it is possible to reduce the size of the trimming circuit, and thus it is possible to provide a low cost, small scale semiconductor device having a trimming circuit that occupies a small area.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 19, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Patent number: 9318784
    Abstract: In certain aspects of the invention, an isolator is configured by a reception circuit, a transmission circuit, and a transformer. In some aspects, the transmission circuit is disposed in an anterior surface of a semiconductor substrate. The transformer is disposed in a posterior surface of the semiconductor substrate and transmits in an electrically isolated state to the reception circuit, a signal input from the transmission circuit. The transformer is configured by a primary coil and a secondary coil. The primary coil can be configured by a metal film embedded in an oxide film inside a coil trench. The secondary coil can be disposed inside an insulating film covering the primary coil so as to oppose the primary coil and is insulated from the primary coil by the insulating film.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: April 19, 2016
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Johnny Kin-On Sin, Lulu Peng, Rongxiang Wu, Hitoshi Sumida, Yoshiaki Toyoda, Masashi Akahane
  • Publication number: 20160043166
    Abstract: A semiconductor device includes a vertical trench gate element portion and a lateral n-channel element portion for control which includes a well diffusion region, and a junction edge termination region which surrounds the vertical trench gate element portion and the lateral n-channel element portion for control. The junction edge termination region includes an oxide layer, a sustain region in contact with a trench provided at the end, and a diffusion region in contact with the sustain region. The diffusion region is deeper than the base region and has low concentration. The sustain region is shallower than the diffusion region and has high concentration. The well diffusion region is deeper than the base region and the sustain region and has low concentration. The breakdown voltage of the junction edge termination region and the well diffusion region is higher than that of the vertical trench gate element portion.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki TOYODA
  • Patent number: 9209296
    Abstract: A semiconductor device includes a vertical trench gate element portion and a lateral n-channel element portion for control which includes a well diffusion region, and a junction edge termination region which surrounds the vertical trench gate element portion and the lateral n-channel element portion for control. The junction edge termination region includes an oxide layer, a sustain region in contact with a trench provided at the end, and a diffusion region in contact with the sustain region. The diffusion region is deeper than the base region and has low concentration. The sustain region is shallower than the diffusion region and has high concentration. The well diffusion region is deeper than the base region and the sustain region and has low concentration. The breakdown voltage of the junction edge termination region and the well diffusion region is higher than that of the vertical trench gate element portion.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 8, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Publication number: 20150340231
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n? semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 26, 2015
    Inventors: Yoshiaki TOYODA, Akio KITAMURA
  • Publication number: 20150333748
    Abstract: A horizontal MOSFET is arranged in parallel to a horizontal MOSFET and a portion of a return current IL which flows to a linear solenoid flows as a current to the horizontal MOSFET. Therefore, a current which flows to a parasitic transistor is reduced and it is possible to suppress the current which flows to the parasitic transistor provided in the horizontal MOSFET. Since the current which flows to the parasitic transistor is reduced, it is possible to prevent the erroneous operation and breakdown of a semiconductor device forming a synchronous rectification circuit.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki TOYODA
  • Publication number: 20150311339
    Abstract: A semiconductor device can ensure predetermined current capacity under maintaining breakdown voltage characteristics and can promote size reduction. A first n-type offset-diffusion-region is disposed inside a p-type well region. In the first n-type offset-diffusion-region, a LOCOS film is disposed on the surface layer of a part sandwiched between an n+-type drain region and n+-type source region. In the first n-type offset-diffusion-region, a gate electrode is disposed on the part sandwiched between the LOCOS film and the n+-type source region. In the first n-type offset-diffusion-region, impurity concentration is lower at the part beneath the gate electrode than at the part beneath the LOCOS film. Inside the first n-type offset-diffusion-region, a second n?-type offset-diffusion-region is disposed at apart located toward the n+-type source region through the LOCOS film so as to be separated from the LOCOS film by a distance x.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 29, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yoshiaki TOYODA, Hideaki KATAKURA
  • Patent number: 9142463
    Abstract: By connecting a protection diode (71) wherein p-anode layers (21) and n-cathode layers (22) are alternately formed in a polysilicon layer, and p-n junctions (74) that are in a reverse blocking state when there is a forward bias are alternately short circuited with a metal film (53), to a power semiconductor element (IGBT (72)), it is possible to achieve a balance between a high breakdown capability and a smaller chip area, a rise of breakdown voltage is suppressed even when a clamping voltage is repeatedly applied, and furthermore, it is possible to prevent destruction caused by a negative surge voltage input into a gate terminal (G).
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 22, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yuichi Harada, Tatsuya Naito, Yoshiaki Toyoda
  • Publication number: 20150260760
    Abstract: Current detection circuit of a semiconductor device provided with a shunt resistor, a voltage division ratio adjustment resistor and a selection circuit which selects a voltage division ratio of the latter and has enhancement type MOSFETs and Zener Zaps as trimming elements. One of the Zener Zaps is trimmed and a divided voltage of the voltage division ratio adjustment resistor connected in parallel with the shunt resistor is outputted. The detected voltage in which variation of the resistance of the shunt resistor has been cancelled is therefore outputted. As the shunt resistor and the voltage division ratio adjustment resistor are laminated together, it is possible to obtain a current detection circuit with a small area, which can detect a current flowing into a shunt resistor with high accuracy.
    Type: Application
    Filed: February 13, 2015
    Publication date: September 17, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hideaki KATAKURA, Yoshiaki TOYODA
  • Patent number: 9129892
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n? semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: September 8, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yoshiaki Toyoda, Akio Kitamura
  • Patent number: 9013161
    Abstract: An open load and a supply fault are differentiated between and detected with a simple configuration. A switching element (Q1) connected between the positive electrode of a direct current power supply and an output terminal (9) is caused to carry out a switching operation, thereby driving a load (7) connected to the output terminal (9). A load trouble detection circuit (21) that detects an opening of the load (7) or a supply fault when the voltage of the output terminal (9) is higher than the value of a first threshold voltage, and a supply fault detection circuit (25) that detects a failure of supply to the power supply of the load (7) when the voltage of the output terminal (9) is higher than the value of a second threshold value voltage subtracted from the power supply voltage when the switching element (Q1) is in an off-state, are included.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Minoru Nishio, Takatoshi Oe, Yoshiaki Toyoda
  • Publication number: 20140370674
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n? semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 18, 2014
    Inventors: Yoshiaki TOYODA, Akio KITAMURA
  • Publication number: 20140306750
    Abstract: A low cost, small scale semiconductor device including a trimming circuit having a fuse resistor is disclosed. By a trimming circuit being configured of a MOSFET, a protection circuit, and a fuse resistor, it is possible to carry out a change from an open circuit state to a short circuit state by fusing the fuse resistor. Also, by the protection circuit and fuse resistor configuring the trimming circuit being formed in a two layer structure, it is possible to reduce the size of the trimming circuit, and thus it is possible to provide a low cost, small scale semiconductor device having a trimming circuit that occupies a small area.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki TOYODA
  • Patent number: 8847305
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n?semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 30, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshiaki Toyoda, Akio Kitamura
  • Patent number: 8835254
    Abstract: A method of forming a device in each of vertical trench gate MOSFET region and control lateral planar gate MOSFET region of a semiconductor substrate is disclosed. A trench is formed in the substrate in the vertical trench gate MOSFET region, a first gate oxide film is formed along the internal wall of the trench, and the trench is filled with a polysilicon film. A LOCOS oxide film is formed in a region isolating the devices. A second gate oxide film is formed on the substrate in the lateral planar gate MOSFET region. Advantages are that number of steps is suppressed, the gate threshold voltage of an output stage MOSFET is higher than the gate threshold voltage of a control MOSFET, the thickness of the LOCOS oxide film does not decrease, and no foreign object residue remains inside the trench.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: September 16, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshiaki Toyoda, Takatoshi Ooe
  • Publication number: 20140253078
    Abstract: An open load and a supply fault are differentiated between and detected with a simple configuration. A switching element (Q1) connected between the positive electrode of a direct current power supply and an output terminal (9) is caused to carry out a switching operation, thereby driving a load (7) connected to the output terminal (9). A load trouble detection circuit (21) that detects an opening of the load (7) or a supply fault when the voltage of the output terminal (9) is higher than the value of a first threshold voltage, and a supply fault detection circuit (25) that detects a failure of supply to the power supply of the load (7) when the voltage of the output terminal (9) is higher than the value of a second threshold value voltage subtracted from the power supply voltage when the switching element (Q1) is in an off-state, are included.
    Type: Application
    Filed: August 21, 2012
    Publication date: September 11, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Minoru Nishio, Takatoshi Oe, Yoshiaki Toyoda
  • Publication number: 20140073102
    Abstract: A method of forming a device in each of vertical trench gate MOSFET region and control lateral planar gate MOSFET region of a semiconductor substrate is disclosed. A trench is formed in the substrate in the vertical trench gate MOSFET region, a first gate oxide film is formed along the internal wall of the trench, and the trench is filled with a polysilicon film. A LOCOS oxide film is formed in a region isolating the devices. A second gate oxide film is formed on the substrate in the lateral planar gate MOSFET region. Advantages are that number of steps is suppressed, the gate threshold voltage of an output stage MOSFET is higher than the gate threshold voltage of a control MOSFET, the thickness of the LOCOS oxide film does not decrease, and no foreign object residue remains inside the trench.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yoshiaki TOYODA, Takatoshi OE
  • Publication number: 20140008718
    Abstract: A semiconductor device includes a vertical trench gate element portion and a lateral n-channel element portion for control which includes a well diffusion region, and a junction edge termination region which surrounds the vertical trench gate element portion and the lateral n-channel element portion for control. The junction edge termination region includes an oxide layer, a sustain region in contact with a trench provided at the end, and a diffusion region in contact with the sustain region. The diffusion region is deeper than the base region and has low concentration. The sustain region is shallower than the diffusion region and has high concentration. The well diffusion region is deeper than the base region and the sustain region and has low concentration. The breakdown voltage of the junction edge termination region and the well diffusion region is higher than that of the vertical trench gate element portion.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 9, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Publication number: 20130321094
    Abstract: In certain aspects of the invention, an isolator is configured by a reception circuit, a transmission circuit, and a transformer. In some aspects, the transmission circuit is disposed in an anterior surface of a semiconductor substrate. The transformer is disposed in a posterior surface of the semiconductor substrate and transmits in an electrically isolated state to the reception circuit, a signal input from the transmission circuit. The transformer is configured by a primary coil and a secondary coil. The primary coil can be configured by a metal film embedded in an oxide film inside a coil trench. The secondary coil can be disposed inside an insulating film covering the primary coil so as to oppose the primary coil and is insulated from the primary coil by the insulating film.
    Type: Application
    Filed: May 15, 2013
    Publication date: December 5, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hitoshi SUMIDA, Yoshiaki TOYODA, Masashi AKAHANE