Patents by Inventor Yoshihiro Kubota

Yoshihiro Kubota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11208719
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: December 28, 2021
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Patent number: 11177123
    Abstract: A compound semiconductor laminate substrate comprising two single-crystalline compound semiconductor substrates directly bonded together and laminated, the single-crystalline compound semiconductor substrates having the same composition including A and B as constituent elements and having the same atomic arrangement, characterized in that the front and back surfaces of the laminate substrate are polar faces comprising the same kind of atoms of A or B, and that a laminate interface comprises a bond of atoms of either B or A and is a unipolar anti-phase region boundary plane in which the crystal lattices of the atoms are matched. In this way, the polar faces of the front and rear surfaces of the compound semiconductor laminate substrate are made monopolar, thereby facilitating semiconductor element process designing, and making it possible to manufacture a low-cost, high-performance, and stable semiconductor element without implementing complex substrate processing.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 16, 2021
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Hiroyuki Nagasawa, Yoshihiro Kubota, Shoji Akiyama
  • Publication number: 20210335658
    Abstract: A highly thermal conductive substrate formed by bonding a device layer formed on a silicon on insulator (SOI) wafer and a buried oxide film to an insulator substrate having a thermal conductivity of 40 W/m·K or more via a low-stress adhesive, wherein a thickness of the buried oxide film is 50 to 500 nm and a thickness of the adhesive is 0.1 to 10 ?m.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 28, 2021
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shigeru KONISHI, Yoshihiro KUBOTA
  • Patent number: 11142464
    Abstract: Provided is a beta zeolite also having exceptional catalytic activity as a catalyst other than an olefin epoxidation catalyst. This beta zeolite is synthesized without using an organic structure-directing agent and has titanium in the structural skeleton thereof, the Ti content being 0.10 mmol/g or higher. This beta zeolite preferably has an Si/Ti molar ratio of 20-200. Also, the Si/Al molar ratio is preferably 100 or higher.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 12, 2021
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kubota, Satoshi Inagaki, Yuya Ikehara, Mei Takeyama, Yasuo Yamazaki
  • Publication number: 20210301419
    Abstract: The present invention includes: transferring a C-plane sapphire thin film 1t having an off-angle of 0.5-5° onto a handle substrate composed of a ceramic material having a coefficient of thermal expansion at 800 K that is greater than that of silicon and less than that of C-plane sapphire; performing high-temperature nitriding treatment on the GaN epitaxial growth substrate 11 and covering the surface of the C-plane sapphire thin film 1t with a surface treatment layer 11a made of AlN; having GaN grow epitaxially on the surface treatment layer 11a; ion-implanting a GaN film 13; pasting and bonding together the GaN film-side surface of the ion-implanted GaN film carrier and a support substrate 12; performing peeling at an ion implantation region 13ion in the GaN film 13 and transferring a GaN thin film 13a onto the support substrate 12; and obtaining a GaN laminate substrate 10.
    Type: Application
    Filed: August 1, 2019
    Publication date: September 30, 2021
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshihiro Kubota, Kazutoshi Nagata
  • Patent number: 11088383
    Abstract: A fuel cell vehicle that reduces damage on a fuel gas pump and deformation of a dash panel toward a cabin side when the vehicle collides head-on. The fuel gas pump is secured to a stack frame via a bracket such that a rotation, axis line of a motor adapted to drive a fuel gas pump inclines with respect to a reference line along the from-rear direction of the vehicle in plan view of the vehicle. Two fastening members secure the stack frame to the bracket in a state of being respectively inserted through a through hole and a cutout portion formed at a mounting portion. The cutout portion is formed such that, when the bracket turns together with the fuel gas pump with respect to the stack frame using one fastening member as a rotational center, the other fastening member exits out of an opening of the cutout portion.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: August 10, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Kamiyama, Yoshihiro Kubota
  • Publication number: 20210229085
    Abstract: There are provided a method for manufacturing a modified aluminosilicate by which a hydroquinone is highly selectively manufactured by reaction of a phenol with hydrogen peroxide, a modified aluminosilicate, and a method for manufacturing an aromatic dihydroxy compound by using the modified aluminosilicate, under industrially advantageous conditions. The method for manufacturing a modified aluminosilicate of the present invention includes a first step of treating an aluminosilicate with an acid, a second step of primarily calcining the treated material obtained in the first step at 550° C. to 850° C., and a third step of contacting the calcined material obtained in the second step with a liquid. containing one or more elements selected from the group consisting of Group 4 elements and. Group 5 elements on. the periodic table, and then drying and secondarily calcining the resultant. The modified aluminosilicate included in the present invention.
    Type: Application
    Filed: May 20, 2019
    Publication date: July 29, 2021
    Inventors: Yoshiya MATSUKAWA, Nobuhiko HORIUCHI, Akihiro OKABE, Yoshihiro KUBOTA, Satoshi INAGAKI
  • Patent number: 11072249
    Abstract: A fuel gas pump of a fuel cell vehicle is fixed to a stack frame and a fuel cell stack via a first bracket and a second bracket so that a rotation axis of a motor is inclined to a reference line along a front-rear direction. The first bracket is fixed by passing a second fastening member through a first notch. The second bracket is fixed by passing a third fastening member through a second notch of a second arm. The first and second brackets are provided such that, when the fuel gas pump rotates, the third fastening member comes off from the second bracket at a timing different from a timing when the second fastening member comes off from the first bracket.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 27, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuji Aishima, Yoshihiro Kubota
  • Patent number: 11069560
    Abstract: A method of transferring a device layer in a SOI wafer obtained by stacking a Si layer, an insulator layer, and the device layer to a transfer substrate, includes a step of temporarily bonding a surface on which the device layer is formed of the SOI wafer to a supporting substrate using an adhesive for temporary bonding, a step of removing the Si layer of the SOI wafer until the insulator layer is exposed and obtaining a thinned device wafer, a step of coating only the transfer substrate with an adhesive for transfer and then bonding the insulator layer in the thinned device wafer to the transfer substrate via the adhesive for transfer, a step of thermally curing the adhesive for transfer under a load at the same time as or after bonding, a step of peeling off the supporting substrate, and a step of removing the adhesive.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: July 20, 2021
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shigeru Konishi, Yoshihiro Kubota
  • Patent number: 11065606
    Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: July 20, 2021
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kubota, Satoshi Inagaki, Naonobu Katada, Satoshi Suganuma, Yasuo Yamazaki, Takahiro Kogawa
  • Patent number: 11001036
    Abstract: A sapphire composite base material including: an inorganic glass substrate, a polyvinyl butyral or silica intermediate film on the inorganic glass substrate, and a single crystal sapphire film on the intermediate film. There is also provided a method for producing a sapphire composite base material, including steps of: forming an ion-implanted layer inside the single crystal sapphire substrate; forming a polyvinyl butyral or silica intermediate film on at least one surface selected from the surface of the single crystal sapphire substrate before or after the ion implantation, and a surface of an inorganic glass substrate; bonding the ion-implanted surface of the single crystal sapphire substrate to the surface of the inorganic glass substrate via the intermediate film to obtain a bonded body; and transferring a single crystal sapphire film to the inorganic glass substrate via the intermediate film.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 11, 2021
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kazutoshi Nagata, Yoshihiro Kubota
  • Publication number: 20210111076
    Abstract: Provided is a method for producing a GaN layered substrate, comprising the steps of: subjecting a C-plane sapphire substrate 11 having an off-angle of 0.5° to 5° to a high-temperature nitriding treatment at 800° C. to 1,000° C. to carry out a surface treatment of the C-plane sapphire substrate; carrying out epitaxial growth of GaN on the surface of the surface-treated C-plane sapphire substrate 11 to produce a GaN film carrier having a surface of an N polar face; forming an ion implantation region 13ion by carrying out ion implantation on the GaN film 13; laminating and joining a support substrate 12 with the GaN film-side surface of the ion-implanted GaN film carrier; and separating at the ion-implanted region 13ion in the GaN film 13 to transfer a GaN thin film 13a onto the support substrate 12, to produce a GaN layered substrate 10 having, on the support substrate 12, a GaN thin film 13a having a surface of a Ga polar face.
    Type: Application
    Filed: June 11, 2019
    Publication date: April 15, 2021
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Sumio SEKIYAMA, Yoshihiro KUBOTA
  • Publication number: 20210002140
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Application
    Filed: November 28, 2018
    Publication date: January 7, 2021
    Inventors: Yoshihiro KAMIMURA, Akira ENDOU, Yasuo YAMAZAKI, Naonobu KATADA, Satoshi SUGANUMA, Yoshihiro KUBOTA, Satoshi INAGAKI
  • Patent number: 10829868
    Abstract: A manufacturing method of an SiC composite substrate 10 that includes a single crystal SiC layer 12 on a polycrystalline SiC substrate 11. After manufacturing a single crystal SiC layer supporting body 14 by providing the single crystal SiC layer 12 on one surface of a holding substrate 21 including Si. A polycrystalline SiC is deposited on the single crystal SiC layer 12 through chemical vapor deposition to manufacture an SiC laminated body 15 laminated with the single crystal SiC layer 12 and the polycrystalline SiC layer 11 having a thickness t on the holding substrate 21?. At the same time, the single crystal SiC layer supporting body 14 is heated at a temperature less than 1,414 degrees Celsius, and a portion of the thickness t of the polycrystalline SiC is deposited. Then, the holding substrate 21? is physically and/or chemically removed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 10, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Hiroyuki Nagasawa
  • Publication number: 20200339431
    Abstract: Provided is a beta zeolite also having exceptional catalytic activity as a catalyst other than an olefin epoxidation catalyst. This beta zeolite is synthesized without using an organic structure-directing agent and has titanium in the structural skeleton thereof, the Ti content being 0.10 mmol/g or higher. This beta zeolite preferably has an Si/Ti molar ratio of 20-200. Also, the Si/Al molar ratio is preferably 100 or higher.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 29, 2020
    Inventors: Yoshihiro KUBOTA, Satoshi INAGAKI, Yuya IKEHARA, Mei TAKEYAMA, Yasuo YAMAZAKI
  • Publication number: 20200338539
    Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 29, 2020
    Inventors: Yoshihiro KUBOTA, Satoshi INAGAKI, Naonobu KATADA, Satoshi SUGANUMA, Yasuo YAMAZAKI, Takahiro KOGAWA
  • Patent number: 10781104
    Abstract: Provided is a composite substrate which is provided with: a single crystal silicon carbide thin film 11 having a thickness of 1?m or less; a handle substrate 12 which supports the single crystal silicon carbide thin film 11 and is formed from a heat-resistant material (excluding single crystal silicon carbide) having a heat resistance of not less than 1,100° C.; and an intervening layer 13 which has a thickness of 1?m or less and is arranged between the single crystal silicon carbide thin film 11 and the handle substrate 12, and which is formed from at least one material selected from among silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, zirconium oxide, silicon and silicon carbide, or from at least one metal material selected from among Ti, Au, Ag, Cu, Ni, Co, Fe, Cr, Zr, Mo, Ta and W. This composite substrate according to the present invention enables the formation of a nanocarbon film having few defects at low cost.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 22, 2020
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Makoto Kawai, Shigeru Konishi, Hiroshi Mogi
  • Publication number: 20200227263
    Abstract: Provided are a device substrate with high thermal conductivity, with high heat dissipation, and with a small loss at high frequencies, and a method of manufacturing the device substrate. A device substrate 1 of the present invention can be manufactured by: provisionally bonding a Si device layer side of an SOI device substrate 10 to a support substrate 20 using a provisional bonding adhesive 31, the SOI device substrate including a Si base substrate 11, a Box layer 12 formed on the Si base substrate, having high thermal conductivity, and being an electrical insulator, and a Si device layer 13 formed on the Box layer; removing the Si base substrate 11 of the provisionally bonded SOI device substrate until the Box layer is exposed, thereby obtaining a thinned device wafer 10a; transfer-bonding the Box layer side of the thinned device wafer and a transfer substrate 40 to each other using a transfer adhesive 32 having a heat-resistant temperature of at least 150° C.
    Type: Application
    Filed: July 10, 2018
    Publication date: July 16, 2020
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshihiro Kubota, Shigeru Konishi
  • Patent number: 10711373
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 14, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Publication number: 20200180444
    Abstract: A fuel gas pump of a fuel cell vehicle is fixed to a stack frame and a fuel cell stack via a first bracket and a second bracket so that a rotation axis of a motor is inclined to a reference line along a front-rear direction. The first bracket is fixed by passing a second fastening member through a first notch. The second bracket is fixed by passing a third fastening member through a second notch of a second arm. The first and second brackets are provided such that, when the fuel gas pump rotates, the third fastening member comes off from the second bracket at a timing different from a timing when the second fastening member comes off from the first bracket.
    Type: Application
    Filed: October 29, 2019
    Publication date: June 11, 2020
    Inventors: Tetsuji AISHIMA, Yoshihiro KUBOTA