Patents by Inventor Yoshikazu Tanabe

Yoshikazu Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6602808
    Abstract: In a gas-phase treating process of a semiconductor wafer using hydrogen, there is provided a technique for safely eliminating the hydrogen in an exhaust gas discharged from a gas-phase treating apparatus. The profile at the end portions of the side walls of gate electrodes of a poly-metal structure is improved by forming the gate electrodes over a semiconductor wafer IA having a gate oxide film and then by supplying the semiconductor wafer 1A with a hydrogen gas containing a low concentration of water, as generated from hydrogen and oxygen by catalytic action, to oxidize the principal face of the semiconductor wafer 1A selectively. After this, the hydrogen in the exhaust gas, as discharged from an oxidizing furnace, is completely converted into water by causing it to react with oxygen by a catalytic method.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: August 5, 2003
    Assignees: Hitachi, Ltd., Hitachi Tokyo Electronics Co., Ltd.
    Inventors: Yoshikazu Tanabe, Toshiaki Nagahama, Nobuyoshi Natsuaki, Yasuhiko Nakatsuka
  • Publication number: 20030143864
    Abstract: With a view to preventing the oxidation of a metal film at the time of light oxidation treatment after gate patterning and at the same time to making it possible to control the reproducibility of oxide film formation and homogeneity of oxide film thickness at gate side-wall end portions, in a gate processing step using a poly-metal, a gate electrode is formed by patterning a gate electrode material which has been deposited over a semiconductor wafer 1A having a gate oxide film formed thereon and has a poly-metal structure and then, the principal surface of the semiconductor wafer 1A heated to a predetermined temperature or vicinity thereof is supplied with a hydrogen gas which contains water at a low concentration, the water having been formed from hydrogen and oxygen by a catalytic action, to selectively oxidize the principal surface of the semiconductor wafer 1A, whereby the profile of the side-wall end portions of the gate electrode is improved.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 31, 2003
    Inventors: Yoshikazu Tanabe, Isamu Asano, Makoto Yoshida, Naoki Yamamoto, Masayoshi Saito, Nobuyoshi Natsuaki
  • Patent number: 6596650
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: July 22, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6593229
    Abstract: Described is a manufacturing method for a semiconductor integrated circuit device which comprises forming, over a gate insulating film which has been formed over the main surface of a single crystal silicon substrate to have an effective film thickness less than 5 nm in terms of Sio2, a W film as a gate electrode material, and heat treating the silicon substrate in a water-vapor- and hydrogen-containing gas atmosphere having a water vapor/hydrogen partial pressure ratio set at a ratio permitting oxidation of silicon without substantial oxidation of the W film, whereby defects of the gate insulating film rightly under the W film are repaired. According to the present invention, in a MISFET having a metal gate electrode formed over a ultra-thin gate insulating film having an effective film thickness less than 5 nm in terms of SiO2, defects of the gate insulating film can be repaired without oxidizing the metal gate electrode.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: July 15, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Yamamoto, Yoshikazu Tanabe
  • Patent number: 6569780
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: May 27, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6528431
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6528403
    Abstract: With a view to preventing the oxidation of a metal film at the time of light oxidation treatment after gate patterning and at the same time to making it possible to control the reproducibility of oxide film formation and homogeneity of oxide film thickness at gate side-wall end portions, in a gate processing step using a poly-metal, a gate electrode is formed by patterning a gate electrode material which has been deposited over a semiconductor wafer 1A having a gate oxide film formed thereon and has a poly-metal structure and then, the principal surface of the semiconductor wafer 1A heated to a predetermined temperature or vicinity thereof is supplied with a hydrogen gas which contains water at a low concentration, the water having been formed from hydrogen and oxygen by a catalytic action, to selectively oxidize the principal surface of the semiconductor wafer 1A, whereby the profile of the side-wall end portions of the gate electrode is improved.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Isamu Asano, Makoto Yoshida, Naoki Yamamoto, Masayoshi Saito, Nobuyoshi Natsuaki
  • Patent number: 6521550
    Abstract: In a gas-phase treating process of a semiconductor wafer using hydrogen, there is provided a technique for safely eliminating the hydrogen in an exhaust gas discharged from a gas-phase treating apparatus. The profile at the end portions of the side walls of gate electrodes of a poly-metal structure is improved by forming the gate electrodes over a semiconductor wafer IA having a gate oxide film and then by supplying the semiconductor wafer 1A with a hydrogen gas containing a low concentration of water, as generated from hydrogen and oxygen by catalytic action, to oxidize the principal face of the semiconductor wafer 1A selectively. After this, the hydrogen in the exhaust gas, as discharged from an oxidizing furnace, is completely converted into water by causing it to react with oxygen by a catalytic method.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: February 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Toshiaki Nagahama, Nobuyoshi Natsuaki, Yasuhiko Nakatsuka
  • Patent number: 6518201
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: February 11, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6518202
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: February 11, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6503819
    Abstract: With a view to preventing the oxidation of a metal film at the time of light oxidation treatment after gate patterning and at the same time to making it possible to control the reproducibility of oxide film formation and homogeneity of oxide film thickness at gate side-wall end portions, in a gate processing step using a poly-metal, a gate electrode is formed by patterning a gate electrode material which has been deposited over a semiconductor wafer 1A having a gate oxide film formed thereon and has a poly-metal structure and then, the principal surface of the semiconductor wafer 1A heated to a predetermined temperature or vicinity thereof is supplied with a hydrogen gas which contains water at a low concentration, the water having been formed from hydrogen and oxygen by a catalytic action, to selectively oxidize the principal surface of the semiconductor wafer 1A, whereby the profile of the side-wall end portions of the gate electrode is improved.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: January 7, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Isamu Asano, Makoto Yoshida, Naoki Yamamoto, Masayoshi Saito, Nobuyoshi Natsuaki
  • Patent number: 6417114
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: July 9, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6403475
    Abstract: Annealing technology is capable of heating a wafer on which a copper film is formed at a desired temperature within a short period of time. A light-shielding plate 106 of SiC (silicon carbide) exhibiting a flat emissivity irrespective of the wavelengths and emitting light over a wide band of wavelengths is interposed between the wafer 1 on which is formed a copper film having a high light reflection factor and lamps 102. The lamps 102 are turned on in this state so that the light-shielding plate 106 is heated, first, and, then, the wafer 1 is heated by light radiated from the light-shielding plate 106 that is heated, thereby to anneal the copper film.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: June 11, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Yasuhiko Nakatsuka, Tadashi Suzuki
  • Publication number: 20020048967
    Abstract: With a view to preventing the oxidation of a metal film at the time of light oxidation treatment after gate patterning and at the same time to making it possible to control the reproducibility of oxide film formation and homogeneity of oxide film thickness at gate side-wall end portions, in a gate processing step using a poly-metal, a gate electrode is formed by patterning a gate electrode material which has been deposited over a semiconductor wafer 1A having a gate oxide film formed thereon and has a poly-metal structure and then, the principal surface of the semiconductor wafer 1A heated to a predetermined temperature or vicinity there of is supplied with a hydrogen gas which contains water at a low concentration, the water having been formed from hydrogen and oxygen by a catalytic action, to selectively oxidize the principal surface of the semiconductor wafer 1A, whereby the profile of the side-wall end portions of the gate electrode is improved.
    Type: Application
    Filed: December 13, 2001
    Publication date: April 25, 2002
    Inventors: Yoshikazu Tanabe, Isamu Asano, Makoto Yoshida, Naoki Yamamoto, Masayoshi Saito, Nobuyoshi Natsuaki
  • Publication number: 20020042211
    Abstract: In a gas-phase treating process of a semiconductor wafer using hydrogen, there is provided a technique for safely eliminating the hydrogen in an exhaust gas discharged from a gas-phase treating apparatus. The profile at the end portions of the side walls of gate electrodes of a poly-metal structure is improved by forming the gate electrodes over a semiconductor wafer IA having a gate oxide film and then by supplying the semiconductor wafer 1A with a hydrogen gas containing a low concentration of water, as generated from hydrogen and oxygen by catalytic action, to oxidize the principal face of the semiconductor wafer 1A selectively. After this, the hydrogen in the exhaust gas, as discharged from an oxidizing furnace, is completely converted into water by causing it to react with oxygen by a catalytic method.
    Type: Application
    Filed: December 13, 2001
    Publication date: April 11, 2002
    Inventors: Yoshikazu Tanabe, Toshiaki Nagahama, Nobuyoshi Natsuaki, Yasuhiko Nakatsuka
  • Publication number: 20020019149
    Abstract: In a gas-phase treating process of a semiconductor wafer using hydrogen, there is provided a technique for safely eliminating the hydrogen in an exhaust gas discharged from a gas-phase treating apparatus. The profile at the end portions of the side walls of gate electrodes of a poly-metal structure is improved by forming the gate electrodes over a semiconductor wafer 1A having a gate oxide film and then by supplying the semiconductor wafer 1A with a hydrogen gas containing a low concentration of water, as generated from hydrogen and oxygen by catalytic action, to oxidize the principal face of the semiconductor wafer 1A selectively. After this, the hydrogen in the exhaust gas, as discharged from an oxidizing furnace, is completely converted into water by causing it to react with oxygen by a catalytic method.
    Type: Application
    Filed: October 19, 2001
    Publication date: February 14, 2002
    Inventors: Yoshikazu Tanabe, Toshiaki Nagahama, Nobuyoshi Natsuaki, Yasuhiko Nakatsuka
  • Publication number: 20020009898
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Application
    Filed: August 28, 2001
    Publication date: January 24, 2002
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Publication number: 20020004315
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Application
    Filed: August 28, 2001
    Publication date: January 10, 2002
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Publication number: 20020004263
    Abstract: In order to provide a light oxidation process technique for use in a CMOS LSI employing a polymetal gate structure and a dual gate structure, so that both oxidation of a refractory metal film constituting a part of a gate electrode and diffusion of boron contained in a p-type polycrystalline silicon film constituting a part of the gate electrode can be prevented, a mixed gas containing a hydrogen gas and steam synthesized from an oxygen gas and a hydrogen gas is supplied to a major surface of a semiconductor wafer A1, and a heat treatment for improving a profile of a gate insulating film that has been cut by etching under an edge part of the gate electrode is conducted under a low thermal load condition in that the refractor metal film is substantially not oxidized, and boron contained in a p-type polycrystalline silicon film constituting a part of the gate electrode is not diffused to the semiconductor substrate through the gate oxide film.
    Type: Application
    Filed: August 15, 2001
    Publication date: January 10, 2002
    Inventors: Yoshikazu Tanabe, Naoki Yamamoto, Shinichiro Mitani, Yuko Hanaoka
  • Patent number: 6334962
    Abstract: A process of supplying moisture at low flow rates which permits high precision control of the flow of moisture to a semiconductor manufacturing line from an apparatus for the generation of moisture, characterized in that the flow of hydrogen to a moisture-generating reactor is controlled by means of a flow controller in such a way that an amount of hydrogen as fed is gradually increased from the start and reaches a specific set level such that when a specific time has passed, a predetermined rate of moisture begins to be produced and supplied to the semiconductor manufacturing line. The moisture is generated in the apparatus for generation of moisture in which hydrogen and oxygen are (a) fed into a reactor provided with a coat of platinum on the wall in the interior space, (b) enhanced in reactivity by the platinum catalytic action, and (c) caused to instantaneously react with each other at a temperature lower than the ignition point to produce moisture without undergoing combustion at a high temperature.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: January 1, 2002
    Assignee: Fujikin Incorporated
    Inventors: Yukio Minami, Koji Kawada, Yoshikazu Tanabe, Nobukazu Ikeda, Akihiro Morimoto