Patents by Inventor Yoshimasa Suzuki

Yoshimasa Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200347473
    Abstract: A high-strength steel sheet contains, in mass %, C: 0.07 to 0.14%, Si: 0.65 to 1.65%, Mn: 1.8 to 2.6%, P: 0.05% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.0060% or less, Ti: 0.005 to 0.030%, B: 0.0002 to 0.0030%, and either or both of Cr: 0.01 to 0.40% and Mo: 0.01 to 0.50% and satisfies the expression (1); where: an average grain size of a ferrite phase is 1.5 ?m or less; an area ratio of the ferrite phase is 2% or more and 15% or less; an area ratio of a tempered martensite phase is 75% or more and 96% or less; and a total length per unit area of an interface between an untempered martensite phase and the ferrite phase and an interface between the untempered martensite phase and the tempered martensite phase is 6.3×108 ?m/m2 to 5.0×1011 ?m/m2.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 5, 2020
    Inventors: Noriaki Kohsaka, Michitaka Sakurai, Yoshikazu Suzuki, Yoshimasa Himei
  • Publication number: 20200299799
    Abstract: Provided is a method for producing a galvannealed steel sheet. When the steel sheet passing through the soaking zone is a type of steel containing 0.2 mass % or more of Si, both dry gas and humidified gas are supplied to the soaking zone, where the humidified gas is supplied only from the humidified gas supply port positioned in a latter part of the soaking zone among a plurality of humidified gas supply ports, where the latter part of the soaking zone is determined considering a sheet passing speed V and a target temperature T on the exit side of the soaking zone.
    Type: Application
    Filed: February 19, 2018
    Publication date: September 24, 2020
    Applicant: JFE STEEL CORPORATION
    Inventors: Gentaro TAKEDA, Yoichi MAKIMIZU, Yoshikazu SUZUKI, Yoshimasa HIMEI, Hideyuki TAKAHASHI
  • Publication number: 20200287054
    Abstract: A semiconductor device includes a thin film transistor including a semiconductor layer, a gate electrode, a gate insulating layer positioned between the semiconductor layer and the gate electrode, and a source electrode and a drain electrode that are electrically connected to the semiconductor layer, wherein the semiconductor layer has a stacked layer structure including a first oxide semiconductor layer including In, Ga, Zn, and Sn, and a second oxide semiconductor layer including In, Ga, Zn, and Sn, having a lower mobility than the first oxide semiconductor layer, and disposed on the first oxide semiconductor layer so as to be in direct contact with the first oxide semiconductor layer, the first and the second oxide semiconductor layers are amorphous, and a Sn atomic ratio R1 relative to all metal elements in the first oxide semiconductor layer and a Sn atomic ratio R2 relative to all metal elements in the second oxide semiconductor layer satisfy 0.8×R1?R2?1.2×R1.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Masahiko SUZUKI, Hajime IMAI, Tetsuo KIKUCHI, Yoshimasa CHIKAMA, Setsuji NISHIMIYA, Teruyuki UEDA, Masamitsu YAMANAKA, Kengo HARA, Hitoshi TAKAHATA, Tohru DAITOH
  • Patent number: 10704117
    Abstract: Provided are a cold-rolled steel sheet which can preferably be used for manufacturing a high-strength galvanized steel sheet and methods for manufacturing the steel sheets. The cold-rolled steel sheet has a specified chemical composition, in which the Mn concentration in a surface layer of the steel sheet satisfies relational expression (1) and relational expression (2) below. 8?(Cp/Cc)×Mn . . . (1) (Cmin/Cc)×Mn?2.5 . . . (2) where Cp: maximum Mn concentration in a region within 0.5 ?m of the surface of a steel sheet in the thickness direction; Cc: average Mn concentration in a region from a position located 5 ?m from a surface of a steel sheet in the thickness direction to a position located 5 ?m from an opposite surface in the thickness direction; Cmin: minimum Mn concentration in a region from 0.5 ?m to 5 ?m from the surface of a steel sheet in the thickness direction; and Mn: Mn content (mass %).
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: July 7, 2020
    Assignee: JFE Steel Corporation
    Inventors: Kenji Kawamura, Noriaki Kohsaka, Yoshimasa Funakawa, Mai Aoyama, Yoshitsugu Suzuki
  • Patent number: 10705325
    Abstract: A focusing method includes a step of preparing a microscope, a step of mounting a sample, and a predetermined processing step, the predetermined processing step includes a step of receiving light emitted from the observation optical system, a step of obtaining the quantity of light based on light from a predetermined region of the received light, a step of calculating a difference or a ratio between the quantity of light in the predetermined region and the quantity of light as a reference, a step of comparing a calculation result with a threshold, and a step of changing the distance between the sample and the observation optical system, and in the step of preparing, a partial region of illumination light is shielded or darkened, and when the result of the calculation is equal to or smaller than the threshold, the predetermined processing step is terminated.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: July 7, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Yoshimasa Suzuki, Kazuo Kajitani
  • Patent number: 10697764
    Abstract: A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set so as to include an optical axis at a pupil position of an illumination optical system. Light transmitted through the sample is incident on the observation optical system. The predetermined processing step includes a step of receiving light emerged from the observation optical system, a step of obtaining a quantity of light of the received light, a step of calculating a difference or a ratio between the quantity of light and a reference quantity of light, and a step of calculating an amount of tilt in a surface of the sample from the difference or the ratio.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 30, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Mayumi Odaira, Yoshimasa Suzuki
  • Patent number: 10649191
    Abstract: A specimen observation apparatus includes: a light source; an illumination optical system; a stage; an imaging optical system; and a reflection member disposed at a position opposed to the imaging optical system across the stage. The illumination optical system is disposed so as to apply illumination light from the light source to a specimen. The imaging optical system is disposed at a position at which the illumination light that is transmitted through the specimen and thereafter reflected by the reflection member to be transmitted through the specimen again enters, and is configured to form an optical image of the specimen. The optical image is formed in a state in which a position of the specimen and a focus position of the imaging optical system are different from each other.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: May 12, 2020
    Assignee: OLYMPUS CORPORATION
    Inventor: Yoshimasa Suzuki
  • Patent number: 10590505
    Abstract: A high-strength steel sheet having a composition containing C: 0.09% to 0.17%, Si: 0.6% to 1.7%, Mn: 3.5% or less, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, Ti: 0.05% or less, and B: 0.0002% to 0.0030% on a mass basis, the remainder being Fe and inevitable impurities. The steel sheet also has a microstructure containing less than 20% (including 0%) of a ferrite phase, 75% or more (including 100%) of a tempered martensite phase, 10% or less (including 0%) of an untempered martensite phase, and less than 5% (including 0%) of a retained austenite phase in terms of area fraction. The tempered martensite phase has a Vickers hardness of 280 to 340 and a tensile strength of 950 MPa to 1,120 MPa.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: March 17, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Noriaki Kohsaka, Yoshimasa Funakawa, Michitaka Sakurai, Yoshikazu Suzuki
  • Publication number: 20200062016
    Abstract: A thermal transfer sheet which can prevent a kick and a scumming, and can form a photographic tone color image of high quality with a continuous tone image by sublimation transfer; a coating liquid for colorant layer to be used for forming the colorant layer of this thermal transfer sheet; a method for manufacturing this thermal transfer sheet; and image forming method employing this thermal transfer sheet. The problem is solved by a thermal transfer sheet (1) in which at least a colorant layer (3) is layered on a substrate sheet (2), wherein the colorant layer (3) contains a predetermined solvent, a colorant (10x) dispersible in the predetermined solvent, a dispersant, and a binder resin, and the dispersant being one or more selected from the group consisting of polyether-based dispersants, graft type polymer dispersants, acryl-based block type polymer dispersants, urethane-based polymer dispersants and azo-based dispersants.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventors: Kazuya YOSHIDA, Hiroaki SEGAWA, Tomohiko IMODA, Yoshimasa KOBAYASHI, Tomoko SUZUKI, Hiroyuki HASEGAWA, Kano SAKAMOTO
  • Patent number: 10539411
    Abstract: A sample shape measuring apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and a processing apparatus. A scanning unit relatively moves a light spot and the sample. Illumination light applied to the sample is transmitted through the sample, and light transmitted through the sample is incident on the detection optical system. The light detection element receives light. The illumination optical system or the detection optical system includes an optical member. The processing apparatus obtains a quantity of light based on a received light, calculates at least one of a difference and a ratio between the quantity of light and a reference quantity of light, calculates an amount of tilt at a surface of the sample, and calculates a shape of the sample from the amount of tilt.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 21, 2020
    Assignee: OLYMPUS CORPORATION
    Inventors: Mayumi Odaira, Yoshimasa Suzuki
  • Patent number: 10525757
    Abstract: The purpose of the present invention is to provide a thermal transfer sheet which can prevent a kick and a scumming, and can form a photographic tone color image of high quality with a continuous tone image by sublimation transfer, while expanding the range of choices for colorants to be included in a colorant layer; a coating liquid for colorant layer to be used for forming the colorant layer of this thermal transfer sheet; a method for manufacturing this thermal transfer sheet; and image forming method employing this thermal transfer sheet.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: January 7, 2020
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Kazuya Yoshida, Hiroaki Segawa, Tomohiko Imoda, Yoshimasa Kobayashi, Tomoko Suzuki, Hiroyuki Hasegawa, Kano Sakamoto
  • Patent number: 10527369
    Abstract: A heat exchanger element includes at least two honeycomb structures arranged serially and each including a cell structural portion having cells separated and formed by partition walls containing SiC and functioning as passages which extend from one end face to the other end face and which a first fluid passes through, and an outer peripheral wall disposed on the outer periphery of the cell structural portion. The first fluid passes through the cells of the honeycomb structures without leaking out of the cells or mixing. The cell structural portions of at least a pair of the honeycomb structures adjacent to each other among the honeycomb structures arranged serially are disposed with a gap, and the first fluid passing through the cells mixes together between end faces forming the gap.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: January 7, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshio Suzuki, Hironori Takahashi, Tatsuo Kawaguchi, Yoshimasa Kondo
  • Patent number: 10458785
    Abstract: A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set so as not to include the optical axis at a pupil position of the illumination optical system and is set such that the illumination light is applied to part of the inside of the pupil and the outside of the pupil at a pupil position of the observation optical system. The predetermined processing step includes a step of receiving light, a step of obtaining the quantity of light, a step of calculating the difference or the ratio between the quantity of light and a reference quantity of light, and a step of calculating the amount of tilt in the surface of the sample from the difference or the ratio.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 29, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Yoshimasa Suzuki, Hisashi Ode, Mayumi Odaira
  • Patent number: 10458781
    Abstract: A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set such that the illumination light is applied to part of inside of a pupil and outside of the pupil, a light intensity of the illumination light incident on the predetermined illumination region differs between a center and a periphery. The predetermined processing step includes a step of receiving light transmitted through the observation optical system, a step of obtaining a quantity of light of the received light, a step of calculating a difference or a ratio between the quantity of light and a reference quantity of light, and a step of calculating an amount of tilt in a surface of the sample from the difference or the ratio.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: October 29, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Mayumi Odaira, Yoshimasa Suzuki, Kazuo Kajitani, Hisashi Ode
  • Publication number: 20190322830
    Abstract: A porous material according to an embodiment of the present invention is a porous material having a large number of fibrous skeletons containing polytetrafluoroethylene as a main component, in which another fluororesin is evenly present on outer peripheral surfaces of fibers of the large number of fibrous skeletons, and the other fluororesin is a tetrafluoroethylene/perfluorodioxole copolymer, a tetrafluoroethylene/perfluoromethyl vinyl ether copolymer, a tetrafluoroethylene/perfluoroethyl vinyl ether copolymer, a tetrafluoroethylene/perfluoropropyl vinyl ether copolymer, or a combination of these.
    Type: Application
    Filed: July 24, 2017
    Publication date: October 24, 2019
    Applicant: SUMITOMO ELECTRIC FINE POLYMER, INC.
    Inventors: Fumihiro HAYASHI, Atsushi UNO, Yoshimasa SUZUKI, Yasuhiko MUROYA, Takayuki USUI
  • Patent number: 10450642
    Abstract: A high-strength galvanized steel sheet that includes a chemical composition containing, by mass %, C: 0.15% or more and 0.25% or less, Si: 0.50% or more and 2.5% or less, Mn: 2.3% or more and 4.0% or less, P: 0.100% or less, S: 0.02% or less, Al: 0.01% or more and 2.5% or less, and Fe and inevitable impurities. The steel sheet having a microstructure containing, by an area percentage basis, a tempered martensite phase: 30% or more and 73% or less, a ferrite phase: 25% or more and 68% or less, a retained austenite phase: 2% or more and 20% or less, and other phases: 10% or less (including 0%), the other phases containing a martensite phase: 3% or less (including 0%) and a bainitic ferrite phase: less than 5% (including 0%).
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: October 22, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Hiroshi Hasegawa, Hideyuki Kimura, Yoshimasa Funakawa, Yoichi Makimizu, Yoshitsugu Suzuki
  • Publication number: 20190271644
    Abstract: A sample observation apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and an image processing apparatus. The scanning unit relatively moves the light spot and the sample. An optical member is disposed. The illumination optical system and the detection optical system are disposed such that an image of a pupil of the illumination optical system is formed at a pupil position of the detection optical system. The image of the pupil of the illumination optical system is decentered relative to a pupil of the detection optical system due to refraction caused by the sample. The illumination optical system, the detection optical system, and the optical member are configured such that quantity of light passing through the pupil of the detection optical system changes by decentering.
    Type: Application
    Filed: May 13, 2019
    Publication date: September 5, 2019
    Applicant: OLYMPUS CORPORATION
    Inventors: Yoshimasa SUZUKI, Mayumi ODAIRA
  • Publication number: 20190265024
    Abstract: A sample shape measuring method includes a step of preparing illumination light passing through a predetermined illumination region, a step of applying the illumination light to a sample, and a predetermined processing step. The predetermined illumination region is set so as to include an optical axis at a pupil position of an illumination optical system. Light transmitted through the sample is incident on the observation optical system. The predetermined processing step includes a step of receiving light emerged from the observation optical system, a step of obtaining a quantity of light of the received light, a step of calculating a difference or a ratio between the quantity of light and a reference quantity of light, and a step of calculating an amount of tilt in a surface of the sample from the difference or the ratio.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Applicant: OLYMPUS CORPORATION
    Inventors: Mayumi ODAIRA, Yoshimasa SUZUKI
  • Publication number: 20190265022
    Abstract: A sample shape measuring apparatus includes a light source unit, an illumination optical system, a detection optical system, a light detection element, and a processing apparatus. A scanning unit relatively moves a light spot and the sample. Illumination light applied to the sample is transmitted through the sample, and light transmitted through the sample is incident on the detection optical system. The light detection element receives light. The illumination optical system or the detection optical system includes an optical member. The processing apparatus obtains a quantity of light based on a received light, calculates at least one of a difference and a ratio between the quantity of light and a reference quantity of light, calculates an amount of tilt at a surface of the sample, and calculates a shape of the sample from the amount of tilt.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Applicant: OLYMPUS CORPORATION
    Inventors: Mayumi ODAIRA, Yoshimasa SUZUKI
  • Publication number: 20190242000
    Abstract: Provided is a method for manufacturing a high-strength galvanized steel sheet. Heating in a first half of oxidizing treatment is performed at a temperature of 400° C. to 750° C. in an atmosphere having a particular O2 concentration and a particular H2O concentration, and heating in a second half of the oxidizing treatment is performed at a temperature of 600° C. to 850° C. in an atmosphere having a particular O2 concentration and a particular H2O concentration. Subsequently, heating in a heating zone for reduction annealing is performed to a temperature of 650° C. to 900° C. at a particular heating rate in an atmosphere having a particular H2 concentration and a particular H2O concentration with the balance being N2 and inevitable impurities, and soaking in a soaking zone for the reduction annealing is performed in an atmosphere having a particular H2 concentration and a particular H2O concentration with the balance being N2 and inevitable impurities.
    Type: Application
    Filed: September 14, 2017
    Publication date: August 8, 2019
    Applicant: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Gentaro Takeda, Hiroshi Hasegawa, Yoshimasa Himei, Yoshikazu Suzuki