Patents by Inventor Yu-Hung Lai

Yu-Hung Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180198024
    Abstract: A micro light-emitting diode chip includes an epitaxial structure, a first electrode, and a second electrode. The epitaxial structure includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer, and the epitaxial structure further includes a first surface, side surface and a second surface opposite to the first surface. The first electrode is disposed on the first surface, and is electrically connected to the first type doped semiconductor layer and contacted the first type doped semiconductor layer on a portion of the first surface. The second electrode is disposed on the first surface and the side surface, and is electrically connected to the second type doped semiconductor layer and contacted the second type doped semiconductor layer on a portion of the side surface. A length of a diagonal of the micro light-emitting diode chip is greater than 1 micrometer and is less than or equal to 140 micrometers.
    Type: Application
    Filed: January 9, 2018
    Publication date: July 12, 2018
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yu-Yun Lo, Tzu-Yang Lin
  • Publication number: 20180197461
    Abstract: A display panel including a backplane and a plurality of micro LEDs is provided. The backplane includes a plurality of sub-pixels. Each of the sub-pixels has N sets of bonding pad. Each set of bonding pads includes a first electrical pad and X second electrical pads. N is an integer of 1˜3, X is an integer of 2˜4. The micro LEDs are respectively disposed in the sub-pixels, and the micro LED is electrically connected to one corresponding set of bonding pads of the N bonding pad sets. A first electrical carrier and a second electrical carrier are provided by the backplane to each of the micro LEDs through the one corresponding set of bonding pads.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 12, 2018
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin, Yun-Li Li, Yu-Yun Lo
  • Publication number: 20180190878
    Abstract: A display device including a backplane, a plurality of light-emitting devices, a first distributed Bragg reflector layer and a second distributed Bragg reflector layer is provided. The light-emitting devices are disposed on the backplane. The first distributed Bragg reflector layer is disposed between the backplane and the light-emitting devices. The light-emitting devices are disposed between the first distributed Bragg reflector layer and the second distributed Bragg reflector layer. A projected area of the first distributed Bragg reflector layer on the backplane is larger than a projected area of one of the light-emitting devices on the backplane or a projected area of the second distributed Bragg reflector layer on the backplane is larger than a projected area of one light-emitting device on the backplane.
    Type: Application
    Filed: December 14, 2017
    Publication date: July 5, 2018
    Applicant: PlayNitride Inc.
    Inventors: Yun-Li Li, Yu-Hung Lai, Tzu-Yang Lin
  • Publication number: 20180166606
    Abstract: A light emitting diode (LED) chip has an inclined notch. The inclined notch has at least one inclined surface. The LED chip includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, a light emitting layer, a first electrode, and a second electrode. The light emitting layer is located between the first-type doped semiconductor layer and the second-type doped semiconductor layer. The inclined surface is inclined with respect to the light emitting layer. The first electrode is electrically connected to the first-type doped semiconductor layer. The second electrode is electrically connected to the second-type doped semiconductor layer. The inclined notch is disposed in the light emitting layer.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 14, 2018
    Applicant: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yun-Li Li, Yu-Yun Lo
  • Publication number: 20180158806
    Abstract: A manufacturing method of a display including the following steps is provided. Firstly, a back plate, a first transfer platform and a second transfer platform are provided, wherein a plurality of first light-emitting devices are disposed on the first transfer platform, and a plurality of second light-emitting devices are disposed on the second transfer platform. Secondly, a plurality of first bonding layers are formed at a plurality of first positions of the back plate. Then, the first transfer platform and the back plate are correspondingly docked, so that the first light-emitting devices are bonded on the first positions through the first bonding layers. After that, a plurality of second bonding layers are formed at a plurality of second positions of the back plate. Finally, the second transfer platform and the back plate are correspondingly docked, so that the second light-emitting devices are bonded on the second positions through the second bonding layers.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 7, 2018
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin, Yu-Yun Lo
  • Publication number: 20180159088
    Abstract: A display including a back plate, a plurality of light emitting devices and a plurality of compensating light emitting devices is provided. The back plate has a plurality of pixels and at least one compensated region. The compensated region includes some of the pixels. The light emitting devices are arranged in all the pixels on the back plate. The compensated light emitting devices are disposed on the back plate and located in each pixel in the compensated region respectively. At least one of the pixels in the compensated region is dead pixel. Besides, a repair method of the display is also provided.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 7, 2018
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yun-Li Li, Tzu-Yang Lin
  • Publication number: 20180076365
    Abstract: A light emitting device includes a first substrate, a second substrate and a plurality of micro epitaxial structures. The second substrate is disposed opposite to the first substrate. The micro epitaxial structures are periodically disposed on the substrate and located between the first substrate and the second substrate. A coefficient of thermal expansion of the first substrate is CTE1, a coefficient of thermal expansion of the second substrate is CTE2, a side length of each of the micro epitaxial structures is W, W is in the range between 1 micrometer and 100 micrometers, and a pitch of any two adjacent micro epitaxial structures is P, wherein W/P=0.1 to 0.95, and CTE2/CTE1=0.8 to 1.2.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 15, 2018
    Applicant: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Patent number: 9859478
    Abstract: A light emitting device includes a first substrate, a second substrate and a plurality of micro epitaxial structures. The second substrate is disposed opposite to the first substrate. The micro epitaxial structures are periodically disposed on the substrate and located between the first substrate and the second substrate. A coefficient of thermal expansion of the first substrate is CTE1, a coefficient of thermal expansion of the second substrate is CTE2, a side length of each of the micro epitaxial structures is W, W is in the range between 1 micrometer and 100 micrometers, and a pitch of any two adjacent micro epitaxial structures is P, wherein W/P=0.1 to 0.95, and CTE2/CTE1=0.8 to 1.2.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 2, 2018
    Assignee: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Publication number: 20170373047
    Abstract: A light emitting device includes a substrate, a plurality of micro light emitting chips and a plurality of conductive bumps. The substrate has a plurality of pads. The micro light emitting chips are disposed on the substrate in dispersion. Each of the micro light emitting chips includes an N-type semiconductor layer, an active layer and a P-type semiconductor layer. The conductive bumps are disposed corresponding to the micro light emitting chips and located between the micro light emitting chips and the substrate. The micro light emitting chips are electrically connected to the pads of the substrate by the conductive bumps. The orthogonal projection area of each of the conductive bumps on the substrate is 1.05 times to 1.5 times of the orthogonal projection area of each of the micro light emitting chips on the substrate.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 28, 2017
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin
  • Publication number: 20170323873
    Abstract: A light emitting device includes a carrier, a plurality of light emitting diode chips and a plurality of buffer pads. Each light emitting diode chip includes a first type semiconductor layer, an active layer, a second type semiconductor layer, a via hole and a plurality of bonding pads. The via hole sequentially penetrates through the first type semiconductor layer, the active layer and a portion of the second type semiconductor layer. The first type semiconductor layer, the active layer, the second type semiconductor layer and the via hole define a epitaxial structure. The buffer pads are disposed between the carrier and the second type semiconductor layer, wherein the buffer pads is with Young's modulus of 2˜10 GPa, the second bonding pad is disposed within the via hole to contact the second type semiconductor layer, and the epitaxial structure is electrically bonded to the receiving substrate through the bonding pads.
    Type: Application
    Filed: July 25, 2017
    Publication date: November 9, 2017
    Applicant: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Patent number: 9793248
    Abstract: A light emitting device includes a substrate, a plurality of micro light emitting chips and a plurality of conductive bumps. The substrate has a plurality of pads. The micro light emitting chips are disposed on the substrate in dispersion. Each of the micro light emitting chips includes an N-type semiconductor layer, an active layer and a P-type semiconductor layer. The conductive bumps are disposed corresponding to the micro light emitting chips and located between the micro light emitting chips and the substrate. The micro light emitting chips are electrically connected to the pads of the substrate by the conductive bumps. An orthogonal projection area of each of the conductive bumps on the substrate is greater than an orthogonal projection area of each of the micro light emitting chips on the substrate.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: October 17, 2017
    Assignee: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin
  • Patent number: 9735690
    Abstract: Systems and methods for reducing the line frequency ripple in a resonant converter are described. In some embodiments, a power supply includes a switching network; an LLC resonant tank coupled to the switching network; a rectifier coupled to the LLC resonant tank; and a control circuit coupled to the switching network and to the rectifier, where the control circuit is configured to modify an operating frequency of the switching network to reduce a line frequency ripple at an output of the rectifier.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 15, 2017
    Assignee: Dell Products, L.P.
    Inventors: Tsai-Fu Hung, Yu-Hung Lai, Shih-Chieh Wang, Feng-Yu Wu
  • Publication number: 20170229430
    Abstract: A light emitting device includes a substrate, micro light emitting chips, reflective structures and conductive bumps. The substrate has pads. The micro light emitting chips are disposed on the substrate separately, and each of the micro light emitting chips includes a light emitting layer, a first type electrode and a second type electrode isolated from the first type electrode, wherein the first type electrode and the second type electrode are disposed on one side of the light emitting layer. The reflective structures are physically separated from each other and spaced apart from the substrate. Each of the reflective structures is disposed around one of the micro light emitting chips. The conductive bumps and located between the micro light emitting chips and the substrate, wherein the micro light emitting chips are electrically boned to the pads of the substrate through the conductive bumps.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin
  • Patent number: 9691948
    Abstract: A method for manufacturing a light emitting device is provided. Multiple epitaxial structures and multiple bonding pads formed thereon are formed on a growth substrate. A first adhesive layer is formed on the growth substrate, wherein the first adhesive layer encapsulates the epitaxial structures and the bonding pads. A first substrate is provided on the first adhesive layer. The growth substrate is removed, so as to expose the epitaxial structures and the first adhesive layer. A second substrate and a second adhesive layer disposed thereon are provided, wherein the epitaxial structures are adhered on the second substrate by the second adhesive layer. The first adhesive layer and the first substrate are removed.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: June 27, 2017
    Assignee: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Patent number: 9666564
    Abstract: A light emitting device includes a substrate, a plurality of micro light emitting chips, a plurality of reflective structures and a plurality of conductive bumps. The substrate has a plurality of pads. The micro light emitting chips are disposed on the substrate in dispersion, and each of the micro light emitting chips includes a light emitting layer. The reflective structures are disposed around the micro light emitting chips in dispersion, and at least cover the micro light emitting layers of the light emitting chips. The conductive bumps are disposed corresponding to the micro light emitting chips and located between the micro light emitting chips and the substrate, wherein the micro light emitting chips are electrically connected to the pads of the substrate through the conductive bumps.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: May 30, 2017
    Assignee: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin
  • Publication number: 20170104417
    Abstract: Systems and methods for reducing the line frequency ripple in a resonant converter are described. In some embodiments, a power supply includes a switching network; an LLC resonant tank coupled to the switching network; a rectifier coupled to the LLC resonant tank; and a control circuit coupled to the switching network and to the rectifier, where the control circuit is configured to modify an operating frequency of the switching network to reduce a line frequency ripple at an output of the rectifier.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Applicant: DELL PRODUCTS, L.P.
    Inventors: Tsai-Fu Hung, Yu-Hung Lai, Shih-Chieh Wang, Feng-Yu Wu
  • Patent number: 9618445
    Abstract: The present application discloses optical microscopy systems and related method that use modulation techniques and contrast agents to enable the systems to detect nonlinear photoacoustic signals with high spectrum sensitivity and frequency selectivity for imaging. A laser beam is amplitude modulated for pure sinusoidal modulation using either the loss modulation technique or the single light amplitude modulation technique. The sample used in the invention is an endogenous contrast agent by itself or is treated by at least one exogenous contrast agent to produce or enhance photoacoustic effect induced by multi-photon absorption. The modulated laser beam is focused via a focusing device onto a sample which absorbs multiple photons simultaneously and generates ultrasonic (acoustic) waves via nonlinear photoacoustic effect. The ultrasonic waves are received and transformed into electrical signals and the frequency signals within the electrical signals are detected and recorded to create images.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: April 11, 2017
    Assignee: National Taiwan University
    Inventors: Chi-Kuang Sun, Yu-Hung Lai, Chieh-Feng Chang, Szu-Yu Lee
  • Publication number: 20170069796
    Abstract: A light emitting device includes a carrier, at least one epitaxial structure, at least one buffer pad and at least one bonding pad. The epitaxial structure is disposed on the carrier. The buffer pad is disposed between the carrier and the epitaxial structure, wherein the epitaxial structure is temporarily bonded to the carrier by the buffer pad. The bonding pad is disposed on the epitaxial structure, wherein the epitaxial structure is electrically connected to a receiving substrate by the bonding pad.
    Type: Application
    Filed: January 20, 2016
    Publication date: March 9, 2017
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Publication number: 20170069804
    Abstract: A method for manufacturing a light emitting device is provided. Multiple epitaxial structures and multiple bonding pads formed thereon are formed on a growth substrate. A first adhesive layer is formed on the growth substrate, wherein the first adhesive layer encapsulates the epitaxial structures and the bonding pads. A first substrate is provided on the first adhesive layer. The growth substrate is removed, so as to expose the epitaxial structures and the first adhesive layer. A second substrate and a second adhesive layer disposed thereon are provided, wherein the epitaxial structures are adhered on the second substrate by the second adhesive layer. The first adhesive layer and the first substrate are removed.
    Type: Application
    Filed: January 20, 2016
    Publication date: March 9, 2017
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Publication number: 20170069803
    Abstract: A light emitting device includes a first substrate, a second substrate and a plurality of micro epitaxial structures. The second substrate is disposed opposite to the first substrate. The micro epitaxial structures are periodically disposed on the substrate and located between the first substrate and the second substrate. A coefficient of thermal expansion of the first substrate is CTE1, a coefficient of thermal expansion of the second substrate is CTE2, a side length of each of the micro epitaxial structures is W, W is in the range between 1 micrometer and 100 micrometers, and a pitch of any two adjacent micro epitaxial structures is P, wherein W/P=0.1 to 0.95,and CTE2/CTE1=0.8 to 1.2.
    Type: Application
    Filed: January 20, 2016
    Publication date: March 9, 2017
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo