Patents by Inventor Yu-Jen Wang

Yu-Jen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10522753
    Abstract: A via connection is provided through a dielectric layer to a bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. A top electrode is deposited on the MTJ stack. A selective hard mask and then a dielectric hard mask are deposited on the top electrode. The dielectric and selective hard masks are patterned and etched. The dielectric and selective hard masks and the top electrode are etched wherein the dielectric hard mask is removed. The top electrode is trimmed using IBE at an angle of 70 to 90 degrees. The selective hard mask, top electrode, and MTJ stack are etched to form a MTJ device wherein over etching into the dielectric layer surrounding the via connection is performed and re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10522741
    Abstract: A method for fabricating a magnetic tunneling junction (MTJ) structure is described. A first dielectric layer is deposited on a bottom electrode and partially etched through to form a first via opening having straight sidewalls, then etched all the way through to the bottom electrode to form a second via opening having tapered sidewalls. A metal layer is deposited in the second via opening and planarized to the level of the first dielectric layer. The remaining first dielectric layer is removed leaving an electrode plug on the bottom electrode. MTJ stacks are deposited on the electrode plug and on the bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and polished to expose a top surface of the MTJ stack on the electrode plug. A top electrode layer is deposited to complete the MTJ structure.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10516102
    Abstract: A MTJ stack is deposited on a bottom electrode. A top electrode layer and hard mask are deposited on the MTJ stack. The top electrode layer not covered by the hard mask is etched. Thereafter, a first spacer layer is deposited over the patterned top electrode layer and the hard mask. The first spacer layer is etched away on horizontal surfaces leaving first spacers on sidewalls of the patterned top electrode layer. The free layer not covered by the hard mask and first spacers is etched. Thereafter, the steps of depositing a subsequent spacer layer over patterned previous layers, etching away the subsequent spacer layer on horizontal surfaces leaving subsequent spacers on sidewalls of the patterned previous layers, and thereafter etching a next layer not covered by the hard mask and subsequent spacers are repeated until all layers of the MTJ stack have been etched to complete the MTJ structure.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10516100
    Abstract: A plasma enhanced chemical vapor deposition (PECVD) method is disclosed for forming a SiON encapsulation layer on a magnetic tunnel junction (MTJ) sidewall that minimizes attack on the MTJ sidewall during the PECVD or subsequent processes. The PECVD method provides a higher magnetoresistive ratio for the MTJ than conventional methods after a 400° C. anneal. In one embodiment, the SiON encapsulation layer is deposited using a N2O:silane flow rate ratio of at least 1:1 but less than 15:1. A N2O plasma treatment may be performed immediately following the PECVD to ensure there is no residual silane in the SiON encapsulation layer. In another embodiment, a first (lower) SiON sub-layer has a greater Si content than a second (upper) SiON sub-layer. A second encapsulation layer is formed on the SiON encapsulation layer so that the encapsulation layers completely fill the gaps between adjacent MTJs.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Vignesh Sundar, Yu-Jen Wang, Dongna Shen, Sahil Patel, Ru-Ying Tong
  • Patent number: 10516101
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode in a substrate. The MTJ stack is etched to form a MTJ structure wherein portions of sidewalls of the MTJ structure are damaged by the etching. Thereafter, the substrate is removed from an etching chamber wherein sidewalls of the MTJ structure are oxidized. A physical cleaning of the MTJ structure removes damaged portions and oxidized portions of the MTJ sidewalls. Thereafter, without breaking vacuum, an encapsulation layer is deposited on the MTJ structure and bottom electrode.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Jen Wang, Keyu Pi, Ru-Ying Tong
  • Publication number: 20190386211
    Abstract: A first conductive layer is patterned and trimmed to form a sub 30 nm conductive via on a first bottom electrode. The conductive via is encapsulated with a first dielectric layer and planarized to expose a top surface of the conductive via. A second conductive layer is deposited over the first dielectric layer and the conductive via. The second conductive layer is patterned to form a sub 60 nm second conductive layer wherein the conductive via and second conductive layer together form a T-shaped second bottom electrode. MTJ stacks are deposited on the T-shaped second bottom electrode and on the first bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and planarized to expose a top surface of the MTJ stack on the T-shaped second bottom electrode. A top electrode contacts the MTJ stack on the T-shaped second bottom electrode plug.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 19, 2019
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20190386201
    Abstract: A method for fabricating a magnetic tunneling junction (MTJ) structure is described. A first dielectric layer is deposited on a bottom electrode and partially etched through to form a first via opening having straight sidewalls, then etched all the way through to the bottom electrode to form a second via opening having tapered sidewalls. A metal layer is deposited in the second via opening and planarized to the level of the first dielectric layer. The remaining first dielectric layer is removed leaving an electrode plug on the bottom electrode. MTJ stacks are deposited on the electrode plug and on the bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and polished to expose a top surface of the MTJ stack on the electrode plug. A top electrode layer is deposited to complete the MTJ structure.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10510789
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an image sensor. The method includes implanting a dopant into a substrate to form a doped region and implanting one or more additional dopants into the substrate to form an image sensing element between the doped region and a front-side of the substrate. The doped region directly contacts a boundary of the image sensing element that is furthest from the front-side of the substrate. The method further includes etching the substrate to form one or more trenches extending into a back-side of the substrate. The back-side of the substrate opposes the front-side of the substrate. The method further includes filling the one or more trenches with one or more dielectric materials to form isolation structures.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Publication number: 20190374869
    Abstract: A party popper contains: a body which includes two first openings defined on two ends of the body respectively. A flexible push portion is mounted on an end of the body, and a launchable cylinder is slidably accommodated in the body. The body includes a surrounding rib fitted thereon, and the flexible push portion is configured to drive the launchable cylinder to slide until the launchable cylinder is stopped by the surrounding rib. Multiple launchable objects are launched from the launchable cylinder inertially, thus launching the multiple launchable objects safely.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 12, 2019
    Inventor: Yu-Jen Wang
  • Publication number: 20190363249
    Abstract: A magnetic tunneling junction (MTJ) structure comprises a pinned layer on a bottom electrode. a barrier layer on the pinned layer, wherein a second metal re-deposition layer is on sidewalls of the barrier layer and the pinned layer, a free layer on the barrier layer wherein the free layer has a first width smaller than a second width of the pinned layer, a top electrode on the free layer having a same first width as the free layer wherein a first metal re-deposition layer is on sidewalls of the free layer and top electrode, and dielectric spacers on sidewalls of the free layer and top electrode covering the first metal re-deposition layer wherein the free layer and the top electrode together with the dielectric spacers have a same the second width as the pinned layer wherein the dielectric spacers prevent shorting between the first and second metal re-deposition layers.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20190363248
    Abstract: A MTJ stack is deposited on a bottom electrode. A metal hard mask is deposited on the MTJ stack and a dielectric mask is deposited on the metal hard mask. A photoresist pattern is formed on the dielectric mask, having a critical dimension of more than about 65 nm. The dielectric and metal hard masks are etched wherein the photoresist pattern is removed. The dielectric and metal hard masks are trimmed to reduce their critical dimension to 10-60 nm and to reduce sidewall surface roughness. The dielectric and metal hard masks and the MTJ stack are etched wherein the dielectric mask is removed and a MTJ device is formed having a small critical dimension of 10-60 nm, and having further reduced sidewall surface roughness.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Dongna Shen, Yi Yang, Jesmin Haq, Yu-Jen Wang
  • Publication number: 20190348601
    Abstract: A via connection is provided through a dielectric layer to a bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. A top electrode is deposited on the MTJ stack. A selective hard mask and then a dielectric hard mask are deposited on the top electrode. The dielectric and selective hard masks are patterned and etched. The dielectric and selective hard masks and the top electrode are etched wherein the dielectric hard mask is removed. The top electrode is trimmed using IBE at an angle of 70 to 90 degrees. The selective hard mask, top electrode, and MTJ stack are etched to form a MTJ device wherein over etching into the dielectric layer surrounding the via connection is performed and re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10475991
    Abstract: A process flow for forming magnetic tunnel junction (MTJ) cells with a critical dimension CD?60 nm by using a top electrode (TE) hard mask having a thickness ?100 nm prior to MTJ etching is disclosed. A carbon hard mask (HM), silicon HM, and photoresist are sequentially formed on a MTJ stack of layers. A pattern of openings in the photoresist is transferred through the Si HM with a first reactive ion etch (RIE), and through the carbon HM with a second RIE. After TE material is deposited to fill the openings, a chemical mechanical process is performed to remove all layers above the carbon HM. The carbon HM is stripped and the resulting TE pillars are trimmed to a CD?60 nm while maintaining a thickness proximate to 100 nm. Thereafter, an etch process forms MTJ cells while TE thickness is maintained at ?70 nm.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 12, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi Yang, Zhongjian Teng, Jesmin Haq, Yu-Jen Wang
  • Patent number: 10475828
    Abstract: An image sensor device structure is provided. The image sensor device structure includes a substrate, and the substrate is doped with a first conductivity type. The image sensor device structure includes a light-sensing region formed in the substrate, and the light-sensing region is doped with a second conductivity type that is different from the first conductivity type. The image sensor device structure further includes a doping region extended into the light-sensing region, and the doping region is doped with the first conductivity type. The image sensor device structure also includes a plurality of color filters formed on the doping region.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 12, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Ting Chiang, Chun-Yuan Chen, Hsiao-Hui Tseng, Yu-Jen Wang, Shyh-Fann Ting, Wei-Chuang Wu, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20190339616
    Abstract: A process flow for shrinking a critical dimension (CD) in photoresist features and reducing CD non-uniformity across a wafer is disclosed. A photoresist pattern is treated with halogen plasma to form a passivation layer with thickness (t1) on feature sidewalls, and thickness (t2) on the photoresist top surface where t2>t1. Thereafter, an etch based on O2, or O2 with a fluorocarbon or halogen removes the passivation layer and shrinks the CD. The passivation layer slows the etch such that photoresist thickness is maintained while CD shrinks to a greater extent for features having a width (d1) than on features having width (d2) where d1>d2. Accordingly, CD non-uniformity is reduced from 2.3% to 1% when d2 is 70 nm and is shrunk to 44 nm after the aforementioned etch. After a second etch through a MTJ stack to form MTJ cells, CD non-uniformity is maintained at 1%.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Yi Yang, Dongna Shen, Jesmin Haq, Yu-Jen Wang
  • Patent number: 10446741
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers on a bottom electrode on a wafer is provided. A metal hard mask layer is provided on the MTJ stack. A stack of multiple dielectric hard masks is formed on the metal hard mask wherein each successive dielectric hard mask has etch selectivity with respect to its underlying and overlying layers. The dielectric hard mask layers are etched in turn selectively with respect to their underlying and overlying layers wherein each successive pattern size is smaller than the preceding pattern size. The MTJ stack is etched selectively with respect to the bottommost combination dielectric and metal hard mask pattern to form a MTJ device having a MTJ pattern size smaller than a bottommost pattern size.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 15, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Yu-Jen Wang, Jesmin Haq, Tom Zhong
  • Publication number: 20190312197
    Abstract: A metal layer and first dielectric hard mask are deposited on a bottom electrode. These are patterned and etched to a first pattern size. The patterned metal layer is trimmed using IBE at an angle of 70-90 degrees wherein the metal layer is reduced to a second pattern size smaller than the first pattern size. A dielectric layer is deposited surrounding the patterned metal layer and polished to expose a top surface of the patterned metal layer to form a via connection to the bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. The MTJ stack is etched to a pattern size larger than the via size wherein an over etching is performed. Re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Yi Yang, Dongna Shen, Zhongjian Teng, Jesmin Haq, Yu-Jen Wang
  • Publication number: 20190295615
    Abstract: A perpendicularly magnetized magnetic tunnel junction (p-MTJ) is disclosed wherein a free layer (FL) has a first interface with a MgO tunnel barrier, a second interface with a Mo or W Hk enhancing layer, and is comprised of FexCoyBz wherein x is 66-80, y is 5-9, z is 15-28, and (x+y+z)=100 to simultaneously provide a magnetoresistive ratio >100%, resistance x area product <5 ohm/?m2, switching voltage <0.15V (direct current), and sufficient Hk to ensure thermal stability to 400° C. annealing. The FL may further comprise one or more M elements such as 0 or N to give (FexCoyBz)wM100-w where w is >90 atomic %. Alternatively, the FL is a trilayer with a FeB layer contacting MgO to induce Hk at the first interface, a middle FeCoB layer for enhanced magnetoresistive ratio, and a Fe or FeB layer adjoining the Hk enhancing layer to increase thermal stability.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 26, 2019
    Inventors: Hideaki Fukuzawa, Vignesh Sundar, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 10418547
    Abstract: A first conductive layer is patterned and trimmed to form a sub 30 nm conductive via on a first bottom electrode. The conductive via is encapsulated with a first dielectric layer and planarized to expose a top surface of the conductive via. A second conductive layer is deposited over the first dielectric layer and the conductive via. The second conductive layer is patterned to form a sub 60 nm second conductive layer wherein the conductive via and second conductive layer together form a T-shaped second bottom electrode. MTJ stacks are deposited on the T-shaped second bottom electrode and on the first bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and planarized to expose a top surface of the MTJ stack on the T-shaped second bottom electrode. A top electrode contacts the MTJ stack on the T-shaped second bottom electrode plug.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: September 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20190280197
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode. A top electrode is provided on the MTJ stack. The top electrode is patterned. Thereafter, the MTJ stack not covered by the patterned top electrode is oxidized or nitridized. Then, the MTJ stack is patterned to form a MTJ device wherein any sidewall re-deposition formed on sidewalls of the MTJ device is non-conductive and wherein some of the dielectric layer remains on horizontal surfaces of the bottom electrode.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 12, 2019
    Inventors: Yu-Jen Wang, Dongna Shen, Vignesh Sundar, Sahil Patel