Patents by Inventor Yu-Jen Wang

Yu-Jen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10718989
    Abstract: An electrically tunable focusing achromatic lens includes a first liquid crystal cell, a second liquid crystal cell, and first and second electrode layer units which have two predetermined patterns for permitting two predetermined radially varying electric fields to be generated to across the first and second liquid crystal cells, respectively, to thereby allow one of the first and second liquid crystal cells to acquire a predetermined positive optical power and the other one of the first and second liquid crystal cells to acquire a predetermined negative optical power. When an incident light passes through the first and second liquid crystal cells, chromatic aberration of the first liquid crystal cell can be counterbalanced by that of the second liquid crystal cell.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: July 21, 2020
    Assignee: National Chiao Tung University
    Inventors: Yu-Jen Wang, Hung-Chun Lin, Yi-Hsin Lin
  • Patent number: 10714680
    Abstract: A stack of connecting metal vias is formed on a bottom electrode by repeating steps of depositing a conductive via layer, patterning and trimming the conductive via layer to form a sub 30 nm conductive via, encapsulating the conductive via with a dielectric layer, and exposing a top surface of the conductive via. A MTJ stack is deposited on the encapsulated via stack. A top electrode layer is deposited on the MTJ stack and patterned and trimmed to form a sub 60 nm hard mask. The MTJ stack is etched using the hard mask to form an MTJ device and over etched into the encapsulation layers but not into the bottom electrode wherein metal re-deposition material is formed on sidewalls of the encapsulation layers underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10714679
    Abstract: An array, such as an MRAM (Magnetic Random Access Memory) array formed of a multiplicity of layered thin film devices, such as MTJ (Magnetic Tunnel Junction) devices, can be simultaneously formed in a multiplicity of horizontal widths in the 60 nm range while all having top electrodes with substantially equal thicknesses and coplanar upper surfaces. This allows such a multiplicity of devices to be electrically connected by a common conductor without the possibility of electrical opens and with a resulting high yield.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Zhongjian Teng, Yu-Jen Wang
  • Publication number: 20200212297
    Abstract: A complementary metal oxide semiconductor (CMOS) device comprises a first metal line, a first metal via on the first metal line, a magnetic tunneling junction (MTJ) device on the first metal via wherein the first metal via acts as a bottom electrode for the MTJ device, a second metal via on the MTJ device, and a second metal line on the second metal via.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Yi Yang, Vignesh Sundar, Dongna Shen, Sahil Patel, Ru-Ying Tong, Yu-Jen Wang
  • Publication number: 20200212298
    Abstract: A MTJ stack is deposited on a bottom electrode, the stack comprising at least a pinned layer, a barrier layer, a free layer, and a top electrode layer. The top electrode and MTJ stack are etched where not covered by a photoresist pattern to form an MTJ structure. A conformal encapsulation dielectric is deposited over the MTJ structure. A magnetic metal layer is deposited on the encapsulation dielectric and anisotropically etched leaving a magnetic metal shield on sidewalls of the MTJ structure. A dielectric layer is deposited over the magnetic metal shield and MTJ structure. The dielectric layer and encapsulation dielectric are polished away to expose the top electrode. A top metal contact layer is deposited contacting the top electrode and the magnetic metal shield wherein the magnetic metal shield has no contact with said bottom electrode and MTJ structure but is separated from them by the encapsulation dielectric.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Inventors: Yi Yang, Guenole Jan, Yu-Jen Wang
  • Patent number: 10700269
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode. A top electrode is provided on the MTJ stack. The top electrode is patterned. Thereafter, the MTJ stack not covered by the patterned top electrode is oxidized or nitridized. Then, the MTJ stack is patterned to form a MTJ device wherein any sidewall re-deposition formed on sidewalls of the MTJ device is non-conductive and wherein some of the dielectric layer remains on horizontal surfaces of the bottom electrode.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: June 30, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Jen Wang, Dongna Shen, Vignesh Sundar, Sahil Patel
  • Publication number: 20200185454
    Abstract: A MTJ stack comprising at least a pinned layer, a barrier layer, and a free layer is deposited on a bottom electrode. A top electrode layer, a carbon-based hard mask, and a dielectric hard mask are deposited in order on the MTJ stack. First, the hard masks and MTJ stack are etched. The etched MTJ stack has a first width. During the first etching, chemical damage forms on sidewalls of the MTJ stack. Next, the carbon-based hard mask is trimmed to a second width smaller than the first width. Then in a second etching, the top electrode and free layer of said MTJ stack not covered by the trimmed carbon-based hard mask are etched to complete formation of the MTJ structure wherein during the second etching of the free layer, chemical damage is removed from the free layer and metal re-deposition is formed on sidewalls of the free layer.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 10680168
    Abstract: A metal layer and first dielectric hard mask are deposited on a bottom electrode. These are patterned and etched to a first pattern size. The patterned metal layer is trimmed using IBE at an angle of 70-90 degrees wherein the metal layer is reduced to a second pattern size smaller than the first pattern size. A dielectric layer is deposited surrounding the patterned metal layer and polished to expose a top surface of the patterned metal layer to form a via connection to the bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. The MTJ stack is etched to a pattern size larger than the via size wherein an over etching is performed. Re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 9, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Zhongjian Teng, Jesmin Haq, Yu-Jen Wang
  • Patent number: 10658409
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate having a front surface and a back surface facing opposite to the front surface; a filling material extending from the front surface into the semiconductor substrate without penetrating through the semiconductor substrate, the filling material including an upper portion and a lower portion, the upper portion being in contact with the semiconductor substrate; and an epitaxial layer lined between the lower portion of the filling material and the semiconductor substrate. An associated manufacturing method is also disclosed.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. U.
    Inventors: Sheng-Chan Li, I-Nan Chen, Tzu-Hsiang Chen, Yu-Jen Wang, Yen-Ting Chiang, Cheng-Hsien Chou, Cheng-Yuan Tsai
  • Patent number: 10648069
    Abstract: A MgO layer is formed using a process flow wherein a Mg layer is deposited at a temperature <200° C. on a substrate, and then an anneal between 200° C. and 900° C., and preferably from 200° C. and 400° C., is performed so that a Mg vapor pressure >100.6 Torr is reached and a substantial portion of the Mg layer sublimes and leaves a Mg monolayer. After an oxidation between ?223° C. and 900° C., a MgO monolayer is produced where the Mg:O ratio is exactly 1:1 thereby avoiding underoxidized or overoxidized states associated with film defects. The process flow may be repeated one or more times to yield a desired thickness and resistance x area value when the MgO is a tunnel barrier or Hk enhancing layer. Moreover, a doping element (M) may be added during Mg deposition to modify the conductivity and band structure in the resulting MgMO layer.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 12, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sahil Patel, Guenole Jan, Yu-Jen Wang
  • Publication number: 20200144488
    Abstract: A dual magnetic tunnel junction (DMTJ) is disclosed with a PL1/TB1/free layer/TB2/PL2 configuration wherein a first tunnel barrier (TB1) has a substantially lower resistance x area (RA1) product than RA2 for an overlying second tunnel barrier (TB2) to provide an acceptable magnetoresistive ratio (DRR). Moreover, first and second pinned layers, PL1 and PL2, respectively, have magnetizations that are aligned antiparallel to enable a lower critical switching current that when in a parallel alignment. The condition RA1<RA2 is achieved with one or more of a smaller thickness and a lower oxidation state for TB1 compared with TB2, with conductive (metal) pathways formed in a metal oxide or metal oxynitride matrix for TB1, or with a TB1 containing a dopant to create conducting states in the TB1 band gap. Alternatively, TB1 may be replaced with a metallic spacer to improve conductivity between PL1 and the FL.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Vignesh Sundar, Yu-Jen Wang, Luc Thomas, Guenole Jan
  • Publication number: 20200144492
    Abstract: A process flow for forming magnetic tunnel junction (MTJ) nanopillars with minimal sidewall residue and minimal sidewall damage is disclosed wherein a pattern is first formed in a hard mask that is an uppermost MTJ layer. Thereafter, the hard mask sidewall is etch transferred through the remaining MTJ layers including a reference layer, free layer, and tunnel barrier between the free layer and reference layer. The etch transfer may be completed in a single RIE step that features a physical component involving inert gas ions or plasma, and a chemical component comprised of ions or plasma generated from one or more of methanol, ethanol, ammonia, and CO. In other embodiments, a chemical treatment with one of the aforementioned chemicals, and a volatilization at 50° C. to 450° C. may follow an etch transfer through the MTJ stack with an ion beam etch or plasma etch involving inert gas ions.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Dongna Shen, Yu-Jen Wang, Ru-Ying Tong, Vignesh Sundar, Sahil Patel
  • Publication number: 20200144493
    Abstract: A MTJ stack is deposited on a bottom electrode. A metal hard mask is deposited on the MTJ stack and a dielectric mask is deposited on the metal hard mask. A photoresist pattern is formed on the dielectric mask, having a critical dimension of more than about 65 nm. The dielectric and metal hard masks are etched wherein the photoresist pattern is removed. The dielectric and metal hard masks are trimmed to reduce their critical dimension to 10-60 nm and to reduce sidewall surface roughness. The dielectric and metal hard masks and the MTJ stack are etched wherein the dielectric mask is removed and a MTJ device is formed having a small critical dimension of 10-60 nm, and having further reduced sidewall surface roughness.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Dongna Shen, Yi Yang, Jesmin Haq, Yu-Jen Wang
  • Publication number: 20200136030
    Abstract: A metal hard mask layer is deposited on a MTJ stack on a substrate. A hybrid hard mask is formed on the metal hard mask layer, comprising a plurality of spin-on carbon layers alternating with a plurality of spin-on silicon layers wherein a topmost layer of the hybrid hard mask is a silicon layer. A photo resist pattern is formed on the hybrid hard mask. First, the topmost silicon layer of the hybrid hard mask is etched where is it not covered by the photo resist pattern using a first etching chemistry. Second, the hybrid hard mask is etched where it is not covered by the photo resist pattern wherein the photoresist pattern is etched away using a second etch chemistry. Thereafter, the metal hard mask and MTJ stack are etched where they are not covered by the hybrid hard mask to form a MTJ device and overlying top electrode.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Yi Yang, Yu-Jen Wang
  • Publication number: 20200136021
    Abstract: A method for fabricating a magnetic tunneling junction (MTJ) structure is described. A first dielectric layer is deposited on a bottom electrode and partially etched through to form a first via opening having straight sidewalls, then etched all the way through to the bottom electrode to form a second via opening having tapered sidewalls. A metal layer is deposited in the second via opening and planarized to the level of the first dielectric layer. The remaining first dielectric layer is removed leaving an electrode plug on the bottom electrode. MTJ stacks are deposited on the electrode plug and on the bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and polished to expose a top surface of the MTJ stack on the electrode plug. A top electrode layer is deposited to complete the MTJ structure.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20200136031
    Abstract: A via connection is provided through a dielectric layer to a bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. A top electrode is deposited on the MTJ stack. A selective hard mask and then a dielectric hard mask are deposited on the top electrode. The dielectric and selective hard masks are patterned and etched. The dielectric and selective hard masks and the top electrode are etched wherein the dielectric hard mask is removed. The top electrode is trimmed using IBE at an angle of 70 to 90 degrees. The selective hard mask, top electrode, and MTJ stack are etched to form a MTJ device wherein over etching into the dielectric layer surrounding the via connection is performed and re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20200136025
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a first metal oxide (Mox) layer and second metal oxide (tunnel barrier) to produce perpendicular magnetic anisotropy (PMA) in the FL. In some embodiments, conductive metal channels made of a noble metal are formed in the Mox that is MgO to reduce parasitic resistance. In a second embodiment, a discontinuous MgO layer with a plurality of islands is formed as the Mox layer and a non-magnetic hard mask layer is deposited to fill spaces between adjacent islands and form shorting pathways through the Mox. In another embodiment, end portions between the sides of a center Mox portion and the MTJ sidewall are reduced to form shorting pathways by depositing a reducing metal layer on Mox sidewalls, or performing a reduction process with forming gas, H2, or a reducing species.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Sahil Patel, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Dongna Shen, Yu-Jen Wang, Po-Kang Wang, Huanlong Liu
  • Publication number: 20200127195
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode in a substrate. The MTJ stack is etched to form a MTJ structure wherein portions of sidewalls of the MTJ structure are damaged by the etching. Thereafter, the substrate is removed from an etching chamber wherein sidewalls of the MTJ structure are oxidized. A physical cleaning of the MTJ structure removes damaged portions and oxidized portions of the MTJ sidewalls. Thereafter, without breaking vacuum, an encapsulation layer is deposited on the MTJ structure and bottom electrode.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Yu-Jen Wang, Keyu Pi, Ru-Ying Tong
  • Publication number: 20200127192
    Abstract: A plasma enhanced chemical vapor deposition (PECVD) method is disclosed for forming a SiON encapsulation layer on a magnetic tunnel junction (MTJ) sidewall that minimizes attack on the MTJ sidewall during the PECVD or subsequent processes. The PECVD method provides a higher magnetoresistive ratio for the MTJ than conventional methods after a 400° C. anneal. In one embodiment, the SiON encapsulation layer is deposited using a N2O:silane flow rate ratio of at least 1:1 but less than 15:1. A N2O plasma treatment may be performed immediately following the PECVD to ensure there is no residual silane in the SiON encapsulation layer. In another embodiment, a first (lower) SiON sub-layer has a greater Si content than a second (upper) SiON sub-layer. A second encapsulation layer is formed on the SiON encapsulation layer so that the encapsulation layers completely fill the gaps between adjacent MTJs.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Vignesh Sundar, Yu-Jen Wang, Dongna Shen, Sahil Patel, Ru-Ying Tong
  • Publication number: 20200119264
    Abstract: A MTJ stack is deposited on a bottom electrode. A top electrode layer and hard mask are deposited on the MTJ stack. The top electrode layer not covered by the hard mask is etched. Thereafter, a first spacer layer is deposited over the patterned top electrode layer and the hard mask. The first spacer layer is etched away on horizontal surfaces leaving first spacers on sidewalls of the patterned top electrode layer. The free layer not covered by the hard mask and first spacers is etched. Thereafter, the steps of depositing a subsequent spacer layer over patterned previous layers, etching away the subsequent spacer layer on horizontal surfaces leaving subsequent spacers on sidewalls of the patterned previous layers, and thereafter etching a next layer not covered by the hard mask and subsequent spacers are repeated until all layers of the MTJ stack have been etched to complete the MTJ structure.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 16, 2020
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang