Patents by Inventor Yu-Jen Wang

Yu-Jen Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190259938
    Abstract: A metal hard mask layer is deposited on a MTJ stack on a substrate. A hybrid hard mask is formed on the metal hard mask layer, comprising a plurality of spin-on carbon layers alternating with a plurality of spin-on silicon layers wherein a topmost layer of the hybrid hard mask is a silicon layer. A photo resist pattern is formed on the hybrid hard mask. First, the topmost silicon layer of the hybrid hard mask is etched where is it not covered by the photo resist pattern using a first etching chemistry. Second, the hybrid hard mask is etched where it is not covered by the photo resist pattern wherein the photoresist pattern is etched away using a second etch chemistry. Thereafter, the metal hard mask and MTJ stack are etched where they are not covered by the hybrid hard mask to form a MTJ device and overlying top electrode.
    Type: Application
    Filed: February 19, 2018
    Publication date: August 22, 2019
    Inventors: Yi Yang, Yu-Jen Wang
  • Publication number: 20190259941
    Abstract: A process flow for forming magnetic tunnel junction (MTJ) cells with a critical dimension CD?60 nm by using a top electrode (TE) hard mask having a thickness?100 nm prior to MTJ etching is disclosed. A carbon hard mask (HM), silicon HM, and photoresist are sequentially formed on a MTJ stack of layers. A pattern of openings in the photoresist is transferred through the Si HM with a first reactive ion etch (RIE), and through the carbon HM with a second RIE. After TE material is deposited to fill the openings, a chemical mechanical process is performed to remove all layers above the carbon HM. The carbon HM is stripped and the resulting TE pillars are trimmed to a CD?60 nm while maintaining a thickness proximate to 100 nm. Thereafter, an etch process forms MTJ cells while TE thickness is maintained at ?70 nm.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: Yi Yang, Zhongjian Teng, Jesmin Haq, Yu-Jen Wang
  • Publication number: 20190259940
    Abstract: An ultra-large height top electrode for MRAM is achieved by employing a novel thin metal/thick dielectric/thick metal hybrid hard mask stack. Etching parameters are chosen to etch the dielectric quickly but to have an extremely low etch rate on the metals above and underneath. Because of the protection of the large thickness of the dielectric layer, the ultra-large height metal hard mask is etched with high integrity, eventually making a large height top electrode possible.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: Yi Yang, Yu-Jen Wang
  • Patent number: 10388862
    Abstract: A via connection is provided through a dielectric layer to a bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. A top electrode is deposited on the MTJ stack. A selective hard mask and then a dielectric hard mask are deposited on the top electrode. The dielectric and selective hard masks are patterned and etched. The dielectric and selective hard masks and the top electrode are etched wherein the dielectric hard mask is removed. The top electrode is trimmed using IBE at an angle of 70 to 90 degrees. The selective hard mask, top electrode, and MTJ stack are etched to form a MTJ device wherein over etching into the dielectric layer surrounding the via connection is performed and re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 20, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Publication number: 20190252451
    Abstract: Various structures of image sensors are disclosed, as well as methods of forming the image sensors. According to an embodiment, a structure comprises a substrate comprising photo diodes, an oxide layer on the substrate, recesses in the oxide layer and corresponding to the photo diodes, a reflective guide material on a sidewall of each of the recesses, and color filters each being disposed in a respective one of the recesses. The oxide layer and the reflective guide material form a grid among the color filters, and at least a portion of the oxide layer and a portion of the reflective guide material are disposed between neighboring color filters.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Wei Chuang Wu, Jhy-Jyi Sze, Yu-Jen Wang, Yen-Chang Chu, Shyh-Fann Ting, Ching-Chun Wang
  • Publication number: 20190245141
    Abstract: An array, such as an MRAM (Magnetic Random Access Memory) array formed of a multiplicity of layered thin film devices, such as MTJ (Magnetic Tunnel Junction) devices, can be simultaneously formed in a multiplicity of horizontal widths in the 60 nm range while all having top electrodes with substantially equal thicknesses and coplanar upper surfaces. This allows such a multiplicity of devices to be electrically connected by a common conductor without the possibility of electrical opens and with a resulting high yield.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Inventors: Yi Yang, Zhongjian Teng, Yu-Jen Wang
  • Patent number: 10359699
    Abstract: A process flow for shrinking a critical dimension (CD) in photoresist features and reducing CD non-uniformity across a wafer is disclosed. A photoresist pattern is treated with halogen plasma to form a passivation layer with thickness (t1) on feature sidewalls, and thickness (t2) on the photoresist top surface where t2>t1. Thereafter, an etch based on O2, or O2 with a fluorocarbon or halogen removes the passivation layer and shrinks the CD. The passivation layer slows the etch such that photoresist thickness is maintained while CD shrinks to a greater extent for features having a width (d1) than on features having width (d2) where d1>d2. Accordingly, CD non-uniformity is reduced from 2.3% to 1% when d2 is 70 nm and is shrunk to 44 nm after the aforementioned etch. After a second etch through a MTJ stack to form MTJ cells, CD non-uniformity is maintained at 1%.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: July 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Jesmin Haq, Yu-Jen Wang
  • Publication number: 20190214414
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an image sensor. The method includes implanting a dopant into a substrate to form a doped region and implanting one or more additional dopants into the substrate to form an image sensing element between the doped region and a front-side of the substrate. The doped region directly contacts a boundary of the image sensing element that is furthest from the front-side of the substrate. The method further includes etching the substrate to form one or more trenches extending into a back-side of the substrate. The back-side of the substrate opposes the front-side of the substrate. The method further includes filling the one or more trenches with one or more dielectric materials to form isolation structures.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Publication number: 20190196458
    Abstract: The present invention provides a method for selecting a leading associated parameter. Selection is performed on data collected by a sensor, and the data is divided into a critical parameter set and another feature parameter set. From the feature parameter set, one parameter that affects beforehand in time the critical parameter is identified as a leading associated parameter. The present invention further uses the critical parameter set and the leading associated parameter to construct an equipment prognostic and health management model that effectively enhances an early warning capability.
    Type: Application
    Filed: June 6, 2018
    Publication date: June 27, 2019
    Inventors: Chien-Ming Martin WEI, Yu-Jen WANG, Hao-Yen CHANG
  • Publication number: 20190189910
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a first metal oxide (Mox) layer and second metal oxide (tunnel barrier) to produce perpendicular magnetic anisotropy (PMA) in the FL. In some embodiments, conductive metal channels made of a noble metal are formed in the Mox that is MgO to reduce parasitic resistance. In a second embodiment, a discontinuous MgO layer with a plurality of islands is formed as the Mox layer and a non-magnetic hard mask layer is deposited to fill spaces between adjacent islands and form shorting pathways through the Mox. In another embodiment, end portions between the sides of a center Mox portion and the MTJ sidewall are reduced to form shorting pathways by depositing a reducing metal layer on Mox sidewalls, or performing a reduction process with forming gas, H2, or a reducing species.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Inventors: Sahil Patel, Guenole Jan, Ru-Ying Tong, Vignesh Sundar, Dongna Shen, Yu-Jen Wang, Po-Kang Wang, Huanlong Liu
  • Publication number: 20190173003
    Abstract: A synthetic antiferromagnetic structure for a spintronic device is disclosed and has an FL2/Co or Co alloy/antiferromagnetic coupling/Co or Co alloy/CoFeB configuration where FL2 is a ferromagnetic free layer with intrinsic PMA. Antiferromagnetic coupling is improved by inserting a Co or Co alloy dusting layer on top and bottom surfaces of the antiferromagnetic coupling layer. The FL2 layer may be a L10 ordered alloy, a rare earth-transition metal alloy, or an (A1/A2)n laminate where A1 is one of Co, CoFe, or an alloy thereof, and A2 is one of Pt, Pd, Rh, Ru, Ir, Mg, Mo, Os, Si, V, Ni, NiCo, and NiFe, or A1 is Fe and A2 is V. A method is also provided for forming the synthetic antiferromagnetic structure.
    Type: Application
    Filed: January 28, 2019
    Publication date: June 6, 2019
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 10304886
    Abstract: The present disclosure relates to a CMOS image sensor having a photodiode surrounded by a back-side deep trench isolation (BDTI) structure, and an associated method of formation. In some embodiments, a plurality of pixel regions is disposed within a substrate and respectively comprising a photodiode. A back-side deep trench isolation (BDTI) structure is disposed between adjacent pixel regions, extending from a back-side of the substrate to a position within the substrate. The BDTI structure comprises a doped layer lining a sidewall surface of a deep trench and a dielectric fill layer filling a remaining space of the deep trench. By forming the disclosed BDTI structure that functions as a doped well and an isolation structure, the implantation processes from a front-side of the substrate is simplified, and thus the exposure resolution, the full well capacity of the photodiode, and the pinned voltage is improved.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 28, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Ting Chiang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jen-Cheng Liu, Yu-Jen Wang, Chun-Yuan Chen
  • Publication number: 20190157322
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a semiconductor substrate having a front surface and a back surface facing opposite to the front surface; a filling material extending from the front surface into the semiconductor substrate without penetrating through the semiconductor substrate, the filling material including an upper portion and a lower portion, the upper portion being in contact with the semiconductor substrate; and an epitaxial layer lined between the lower portion of the filling material and the semiconductor substrate. An associated manufacturing method is also disclosed.
    Type: Application
    Filed: February 23, 2018
    Publication date: May 23, 2019
    Inventors: SHENG-CHAN LI, I-NAN CHEN, TZU-HSIANG CHEN, YU-JEN WANG, YEN-TING CHIANG, CHENG-HSIEN CHOU, CHENG-YUAN TSAI
  • Publication number: 20190157319
    Abstract: An image sensor device structure is provided. The image sensor device structure includes a substrate, and the substrate is doped with a first conductivity type. The image sensor device structure includes a light-sensing region formed in the substrate, and the light-sensing region is doped with a second conductivity type that is different from the first conductivity type. The image sensor device structure further includes a doping region extended into the light-sensing region, and the doping region is doped with the first conductivity type. The image sensor device structure also includes a plurality of color filters formed on the doping region.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 23, 2019
    Inventors: Yen-Ting CHIANG, Chun-Yuan CHEN, Hsiao-Hui TSENG, Yu-Jen WANG, Shyh-Fann TING, Wei-Chuang WU, Jen-Cheng LIU, Dun-Nian YAUNG
  • Patent number: 10297746
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers is provided on a bottom electrode. A top electrode is provided on the MTJ stack. The top electrode is patterned. Thereafter, the MTJ stack not covered by the patterned top electrode is oxidized or nitridized. Then, the MTJ stack is patterned to form a MTJ device wherein any sidewall re-deposition formed on sidewalls of the MTJ device is non-conductive and wherein some of the dielectric layer remains on horizontal surfaces of the bottom electrode.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: May 21, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Jen Wang, Dongna Shen, Vignesh Sundar, Sahil Patel
  • Publication number: 20190139997
    Abstract: A semiconductor image sensor device includes a semiconductor substrate, a radiation-sensing region, and a first isolation structure. The radiation-sensing region is in the semiconductor substrate. The first isolation structure is in the semiconductor substrate and adjacent to the radiation-sensing region. The first isolation structure includes a bottom isolation portion in the semiconductor substrate, an upper isolation portion in the semiconductor substrate, and a diffusion barrier layer surrounding a sidewall of the upper isolation portion.
    Type: Application
    Filed: March 27, 2018
    Publication date: May 9, 2019
    Inventors: YEN-TING CHIANG, CHUN-YUAN CHEN, HSIAO-HUI TSENG, SHENG-CHAN LI, YU-JEN WANG, WEI CHUANG WU, SHYH-FANN TING, JEN-CHENG LIU, DUN-NIAN YAUNG
  • Publication number: 20190140168
    Abstract: A seed layer stack with a uniform top surface having a peak to peak roughness of 0.5 nm is formed by sputter depositing an amorphous layer on a smoothing layer such as Mg where the latter has a resputtering rate 2 to 30× that of the amorphous layer. The uppermost seed (template) layer is NiW, NiMo, or one or more of NiCr, NiFeCr, and Hf while the bottommost seed layer is one or more of Ta, TaN, Zr, ZrN, Nb, NbN, Mo, MoN, TiN, W, WN, and Ru. Accordingly, perpendicular magnetic anisotropy in an overlying magnetic layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The amorphous seed layer is SiN, TaN, or CoFeM where M is B or another element with a content that makes CoFeM amorphous as deposited.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Jian Zhu, Guenole Jan, Yuan-Jen Lee, Huanlong Liu, Ru-Ying Tong, Jodi Mari Iwata, Vignesh Sundar, Luc Thomas, Yu-Jen Wang, Sahil Patel
  • Patent number: 10276618
    Abstract: The present disclosure, in some embodiments, relates to a CMOS image sensor. The CMOS image sensor has an image sensing element disposed within a substrate. A plurality of isolation structures are arranged along a back-side of the substrate and are separated from opposing sides of the image sensing element by non-zero distances. A doped region is laterally arranged between the plurality of isolation structures. The doped region is also vertically arranged between the image sensing element and the back-side of the substrate. The doped region physically contacts the image sensing element.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Publication number: 20190123267
    Abstract: A method for etching a magnetic tunneling junction (MTJ) structure is described. A stack of MTJ layers on a bottom electrode on a wafer is provided. A metal hard mask layer is provided on the MTJ stack. A stack of multiple dielectric hard masks is formed on the metal hard mask wherein each successive dielectric hard mask has etch selectivity with respect to its underlying and overlying layers. The dielectric hard mask layers are etched in turn selectively with respect to their underlying and overlying layers wherein each successive pattern size is smaller than the preceding pattern size. The MTJ stack is etched selectively with respect to the bottommost combination dielectric and metal hard mask pattern to form a MTJ device having a MTJ pattern size smaller than a bottommost pattern size.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 25, 2019
    Inventors: Yi Yang, Yu-Jen Wang, Jesmin Haq, Tom Zhong
  • Patent number: 10269858
    Abstract: Among other things, one or more image sensors and techniques for forming image sensors are provided. An image sensor comprises a photodiode array configured to detect light. The image sensor comprises an oxide grid comprising a first oxide grid portion and a second oxide grid portion. A metal grid is formed between the first oxide grid portion and the second oxide grid portion. The oxide grid and the metal grid define a filler grid. The filler grid comprises a filler grid portion, such as a color filter, that allows light to propagate through the filler grid portion to an underlying photodiode. The oxide grid and the metal grid confine or channel the light within the filler grid portion. The oxide grid and the metal grid are formed such that the filler grid provides a relatively shorter propagation path for the light, which improves light detection performance of the image sensor.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shyh-Fann Ting, Ching-Chun Wang, Chen-Jong Wang, Jhy-Jyi Sze, Chun-Ming Su, Wei Chuang Wu, Yu-Jen Wang