Patents by Inventor Yuji Fujii

Yuji Fujii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150065298
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline disconnect clutch operation is adjusted in response to vehicle mass so that the vehicle may operate similarly at lower and higher vehicle masses.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Gregory Michael Pietron, James William Loch McCallum, Yuji Fujii
  • Publication number: 20150051045
    Abstract: Systems and methods for improving hybrid vehicle torque control are presented. The system and methods included may estimate driveline torque via springs of a dual mass flywheel. The estimated driveline torque may provide feedback for adjusting operation of a driveline disconnect clutch and/or engine torque.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 19, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Alex O`Connor Gibson, Jeffrey Allen Doering, Seung-Hoon Lee, Yuji Fujii, James William Loch McCallum, William Russell Goodwin
  • Patent number: 8956264
    Abstract: A control system for a vehicle transmission includes a controller configured to output a first torque estimate defined in terms of one nonlinear function of a transmission parameter for a particular value of the transmission parameter. The controller also receives a measured torque of the transmission at the particular value of the transmission parameter, and outputs a modified torque estimate for the particular value of the transmission parameter based on the measured torque.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 17, 2015
    Assignee: Ford Global Technologies
    Inventors: Diana Yanakiev, Yuji Fujii, Gregory Michael Pietron, Alexander O'Connor Gibson, Joseph F. Kucharski, Nimrod Kapas
  • Publication number: 20150024904
    Abstract: A vehicle powertrain includes a transmission and a clutch. The slip of the clutch is adjusted to a predefined target where a sensed parameter of a shaft of the transmission corresponds to a specified noise, vibration, and harshness (NVH) level in the powertrain. The sensed parameter of the transmission shaft may be one of acceleration, speed, and torque of the transmission shaft. The transmission shaft may be one of the input shaft and output shaft of the transmission.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 22, 2015
    Inventors: Gregory Michael Pietron, Yuji Fujii, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas, Alexander O'Connor Gibson, Seung-Hoon Lee
  • Patent number: 8938340
    Abstract: A system and method for controlling a vehicle powertrain having a transmission to improve shift quality is based on detection of an initial rise time of an on-coming clutch torque capacity, which indicates the start of the torque phase. The initial rise time is detected using a transmission input shaft torque computation. The system may include a vehicle powertrain having an engine, a transmission coupled to the engine via a torque converter and a controller configured to initiate torque phase control when a difference between a first transmission input shaft torque and a second transmission input shaft torque exceeds a first predetermined threshold parameter during a shift event characterized by a preparatory phase, a torque phase and an inertia phase.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 20, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher John Teslak, Yuji Fujii, Seung-Hoon Lee, Bradley Dean Riedle, Michael Glenn Fodor
  • Publication number: 20150012193
    Abstract: A transmission includes sensors positioned adjacent respective pairs of magnetized bands on a shaft of the transmission for detecting magnetic flux emanating from the bands in response to torque on the shaft. The transmission further includes an electronics interface assembly configured to respectively provide drive signals to the sensors and to receive from the sensors, in response to the drive signals, output signals indicative of the torque on the shaft as detected by the sensors.
    Type: Application
    Filed: September 3, 2014
    Publication date: January 8, 2015
    Inventors: Gregory Michael Pietron, Nimrod Kapas, Joseph F. Kucharski, Steven Adam Hermann, Christopher Gregory Garbacz, Yuji Fujii, Diana Yanakiev, Roberto Teran, JR.
  • Publication number: 20150006011
    Abstract: Systems and methods for improving operation of a power take off are presented. In one example, the power take off may be rotated in two different directions. The approaches may improve operation of a power take off device.
    Type: Application
    Filed: August 25, 2014
    Publication date: January 1, 2015
    Inventors: Alex O'Connor Gibson, Gregory Michael Pietron, Yuji Fujii, Jeffrey Allen Doering, James William Loch McCallum
  • Publication number: 20140378273
    Abstract: A method and a system for reducing driveline speed oscillations related to a driveline resonance frequency are described. Driveline speed oscillations may be reduced via slipping a driveline clutch or adjusting torque of a driveline motor/generator. The method and system may be activated during select vehicle operating conditions.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Alex O'Connor Gibson, Yuji Fujii, Felix Nedorezov, Marvin Paul Kraska
  • Patent number: 8905896
    Abstract: Methods and systems are provided for controlling a vehicle system including a selectively shut-down engine, a torque converter and a torque converter lock-up clutch. One example method comprises, during an idle-stop engine shut-down, restricting flow of transmission fluid out of the torque converter, and adjusting engagement of the torque converter lock-up clutch to adjust a drag torque on the engine to stop the engine.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: December 9, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Seung-Hoon Lee, Alex O'Connor Gibson, Yuji Fujii, Roger Lyle Huffmaster, Peter John Grutter
  • Publication number: 20140350810
    Abstract: A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Gregory Michael Pietron, Yuji Fujii, Joseph F. Kucharski, Nicholas Joseph Witte, Stephen Michael Cicala, Bradley Dean Riedle, Diana Yanakiev, Nimrod Kapas, Davorin David Hrovat
  • Patent number: 8894541
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline operating modes may be adjusted in response to driving surface conditions. The approaches may improve vehicle drivability and reduce driveline degradation.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: November 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Gregory Michael Pietron, Yuji Fujii, James William Loch McCallum, Jeffrey Allen Doering
  • Patent number: 8894544
    Abstract: A system and method for minimizing torque disturbances during a shift event for an automatic transmission control actual transmission input shaft torque using a transmission input shaft signal produced by an input shaft torque sensor. The torque sensor provides a signal to a controller that monitors the measured transmission input torque. The torque sensor may be implemented by a strain gauge, a piezoelectric load cell, or a magneto-elastic torque sensor. The system may include a vehicle powertrain having an engine, a transmission coupled to the engine via a torque converter, an input torque sensor coupled to the input shaft of the transmission and a controller configured to control engine torque to cause the measured transmission input shaft torque to achieve a target transmission input shaft torque during the shift event.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexander O'Connor Gibson, Seung-Hoon Lee, Yuji Fujii, Gregory Michael Pietron, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas
  • Patent number: 8886425
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline disconnect clutch operation is adjusted in response to vehicle mass so that the vehicle may operate similarly at lower and higher vehicle masses.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Gregory Michael Pietron, James William Loch McCallum, Yuji Fujii
  • Patent number: 8882636
    Abstract: A vehicle powertrain includes a transmission and a clutch. The slip of the clutch is adjusted to a target where a magnitude of a sensed parameter of a shaft of the transmission corresponds to a desired noise, vibration, and harshness (NVH) level in the powertrain. The sensed parameter of the transmission shaft may be one of acceleration, speed, and torque of the transmission shaft. The transmission shaft may be one of the input shaft and output shaft of the transmission.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Yuji Fujii, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas, Alexander O'Connor Gibson, Seung-Hoon Lee
  • Publication number: 20140324308
    Abstract: A transmission clutch control method includes defining a transfer function relating clutch torque to a control signal under transmission operating conditions; determining a target clutch torque for current operating conditions; determining the target control signal from the transfer function to produce target torque at the clutch; correcting clutch torque on the basis of a difference between the target clutch torque and the actual torque at the clutch by adjusting the control signal; calculating actual clutch torque with reference to transmission input torque and transmission output torque; computing a clutch torque error as a difference between calculated clutch torque and the target clutch torque; and repetitively adjusting the transfer function on the basis of the clutch torque error.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Gregory M. Pietron, Diana Yanakiev, Yuji Fujii, Joseph F. Kucharski, Nimrod Kapas
  • Patent number: 8852056
    Abstract: A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one example, the method adjusts a desired engine speed to at least two levels during engine speed run-up from cranking to engine idle speed. The method may improve vehicle launch for stop/start vehicles.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: October 7, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Felix Nedorezov, Seung-Hoon Lee, Yuji Fujii, Jeffrey Allen Doering
  • Patent number: 8844379
    Abstract: A transmission includes sensors positioned adjacent respective pairs of magnetized bands on a shaft of the transmission for detecting magnetic flux emanating from the bands in response to torque on the shaft. The transmission further includes an electronics interface assembly configured to respectively provide drive signals to the sensors and to receive from the sensors, in response to the drive signals, output signals indicative of the torque on the shaft as detected by the sensors.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: September 30, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Nimrod Kapas, Joseph F. Kucharski, Steven Adam Hermann, Christopher Gregory Garbacz, Yuji Fujii, Diana Yanakiev, Roberto Teran, Jr.
  • Publication number: 20140287872
    Abstract: A control system and method for controlling a multiple gear ratio automatic transmission in a powertrain for an automatic transmission having pressure activated friction torque elements to effect gear ratio upshifts. The friction torque elements are synchronously engaged and released during a torque phase of an upshift event as torque from a torque source is increased while allowing the off-going friction elements to slip, followed by an inertia phase during which torque from a torque source is modulated. A perceptible transmission output torque reduction during an upshift is avoided. Measured torque values are used during a torque phase of the upshift to correct an estimated oncoming friction element target torque so that transient torque disturbances at an oncoming clutch are avoided and torque transients at the output shaft are reduced.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher John Teslak, Gregory Michael Pietron, Hongtei Eric Tseng, Yuji Fujii, Michael Glenn Fodor, Diana Yanakiev, Seung-Hoon Lee
  • Publication number: 20140277974
    Abstract: A system and method for controlling a vehicle powertrain having a transmission to improve shift quality is based on detection of an initial rise time of an on-coming clutch torque capacity, which indicates the start of the torque phase. The initial rise time is detected using a transmission input shaft torque computation. The system may include a vehicle powertrain having an engine, a transmission coupled to the engine via a torque converter and a controller configured to initiate torque phase control when a difference between a first transmission input shaft torque and a second transmission input shaft torque exceeds a first predetermined threshold parameter during a shift event characterized by a preparatory phase, a torque phase and an inertia phase.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Christopher John Teslak, Yuji Fujii, Seung-Hoon Lee, Bradley Dean Riedle, Michael Glenn Fodor
  • Publication number: 20140274555
    Abstract: A system and method for minimizing torque disturbances during a shift event for an automatic transmission control actual transmission input shaft torque using a transmission input shaft signal produced by an input shaft torque sensor. The torque sensor provides a signal to a controller that monitors the measured transmission input torque. The torque sensor may be implemented by a strain gauge, a piezoelectric load cell, or a magneto-elastic torque sensor. The system may include a vehicle powertrain having an engine, a transmission coupled to the engine via a torque converter, an input torque sensor coupled to the input shaft of the transmission and a controller configured to control engine torque to cause the measured transmission input shaft torque to achieve a target transmission input shaft torque during the shift event.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Alexander O'Connor Gibson, Seung-Hoon Lee, Yuji Fujii, Gregory Michael Pietron, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas