Patents by Inventor Yuji Fujii

Yuji Fujii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160047714
    Abstract: A calibration method includes obtaining in-vehicle measured clutch torques at a set of shift conditions; performing a series of bench tests at various clutch pack clearances and lubrication oil flow rates at the set of shift conditions; adjusting clutch pack clearances and lubrication oil flow rates during the series of bench tests in response to a difference between a bench test measured clutch torques and the corresponding in-vehicle measured clutch torques exceeding a threshold; and recording relationships between first bench test measured torques and force profiles of a clutch actuator relative to the adjusted clutch pack clearances and lubrication oil flow rates for each of the set of shift conditions as a first transfer function in response to the difference between the first bench test measured clutch torques and the in-vehicle clutch torques not exceeding the threshold for each of the set of shift conditions.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Yuji FUJII, Gregory Michael PIETRON, Diana YANAKIEV, Eric Hongtei TSENG, Vladimir IVANOVIC, Jau-Wen TSENG
  • Patent number: 9260102
    Abstract: A control system and method for controlling a multiple gear ratio automatic transmission in a powertrain for an automatic transmission having pressure activated friction torque elements to effect gear ratio upshifts. The friction torque elements are synchronously engaged and released during a torque phase of an upshift event as torque from a torque source is increased while allowing the off-going friction elements to slip, followed by an inertia phase during which torque from a torque source is modulated. A perceptible transmission output torque reduction during an upshift is avoided. Measured torque values are used during a torque phase of the upshift to correct an estimated oncoming friction element target torque so that transient torque disturbances at an oncoming clutch are avoided and torque transients at the output shaft are reduced.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: February 16, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Christopher John Teslak, Gregory Michael Pietron, Hongtei Eric Tseng, Yuji Fujii, Michael Glenn Fodor, Diana Yanakiev, Seung-Hoon Lee
  • Patent number: 9260491
    Abstract: It is an object of the present invention to provide a protein that can successfully treats almost all patients with cedar pollinosis and can be ingested as a food. That is, the present invention provides a protein comprising an amino acid sequence represented by SEQ ID NO:1 or comprising an amino acid sequence having a mutation(s) in said amino acid sequence, and having an immunogenicity of a cedar pollen; a polynucleotide encoding said protein; a vector comprising said polynucleotide; a transformant comprising said polynucleotide or said vector; and intended uses of said protein, said polynucleotide, and said transformant.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 16, 2016
    Assignees: NIPPON PAPER INDUSTRIES CO., LTD., NATIONAL INSTITUTE OF AGROBIOLOGICAL SCIENCES
    Inventors: Fumio Takaiwa, Hidenori Takagi, Yuhya Wakasa, Yuji Fujii, Tomotaka Shinya, Saori Kasahara
  • Patent number: 9243706
    Abstract: A method for controlling a manual transmission includes using a controller to determine a desired torque transmitted through an input clutch and a desired clutch slip for the desired gear after a shift lever is moved to a desired gear position and while a clutch pedal is being released for engaging the clutch; measuring torque in the vehicle drive assembly; using measured torque to determine actual clutch torque transmitted through the clutch; and reducing torque error using the controller to adjust a clutch actuator such that a difference between the desired torque and the actual torque is reduced. Slip error may also be reduced by adjusting the clutch actuator to reduce the difference between the desired slip and measured slip.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: January 26, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Yuji Fujii, Alex O'Connor Gibson, Gregory M. Pietron, Nimrod Kapas, Joseph F. Kucharski
  • Publication number: 20160017996
    Abstract: A multiple ratio transmission having an input shaft, an output shaft and oncoming clutch and off-going clutch for effecting ratio upshifts is provided. The transmission also includes a transmission controller configured for controlling shifts. During the torque phase of a ratio upshift, the controller increases input torque. Next, the controller estimates an oncoming clutch target torque. The controller controls a torque input to ensure the off-going clutch remains locked. The controller measures an actual transmission value for a torque transmitting element of the transmission and corrects the oncoming clutch target torque using the actual transmission value whereby an increasing torque for the oncoming friction element is achieved with minimal torque transients along the output shaft during the upshift.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 21, 2016
    Inventors: Christopher John Teslak, Gregory Michael Pietron, Hongtei Eric Tseng, Yuji Fujii, Michael Glenn Fodor, Diana Yanakiev, Seung-Hoon Lee
  • Publication number: 20160005819
    Abstract: Contact resistance between a SiC substrate and an electrode is decreased. When a silicide layer is analyzed by Auger Electron Spectroscopy (AES) sputter in a direction from a titanium layer side to a SiC substrate side, sputtering time corresponding to a depth profile of the silicide layer is defined as ts. In this case, a depth profile of the silicide layer from the titanium layer side in a range of sputtering time from 0.4ts to ts contains a region where titanium atoms determined by the AES sputter accounts for 5 at % or more of all atoms determined by the AES sputter.
    Type: Application
    Filed: June 13, 2015
    Publication date: January 7, 2016
    Inventors: Takahiro Kainuma, Takashi Igarashi, Hiroshi Inagawa, Takeshi Arai, Yuji Fujii, Takahiro Okamura, Hisashi Toyoda
  • Publication number: 20150360683
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, application of a driveline disconnect clutch to start an engine is described. The approach applies the driveline disconnect clutch to rotate an engine and at least partially disengages the driveline disconnect clutch to reduce the possibility of a reduction in torque applied to vehicle wheels.
    Type: Application
    Filed: August 24, 2015
    Publication date: December 17, 2015
    Inventors: Alexander O'Connor Gibson, Felix Nedorezov, Jeffrey Allen Doering, Hong Jiang, Seung-Hoon Lee, James William Loch McCallum, Gregory Michael Pietron, Yuji Fujii
  • Patent number: 9212937
    Abstract: A flow meter device of a fluid includes a time difference measuring means which measures time for a received wave to reach a zero cross point after the received wave exceeds a reference voltage, after transmission of a signal, and a reference voltage setting means which changes the reference voltage from a minimum value to a maximum value, recognizes peak voltages of waves of the received wave based on a plurality of inflection points at which a time difference measured by the time difference measuring means when the reference voltage is changed from the minimum voltage to the maximum voltage, is significantly changed, and automatically sets the reference voltage to a point between peak voltages of particular two waves based on a ratio between the peak voltages, and the reference voltage is changed from a voltage which is close to the peak voltages of the two waves and the peak voltages are newly recognized, when the reference voltage is newly set.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 15, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasuo Koba, Kouichi Takemura, Aoi Watanabe, Yuji Fujii
  • Publication number: 20150354698
    Abstract: A method of downshifting an automotive transmission. An on-coming transmission element is stroked while pressure for an off-going element is reduced. Pressure for the stroked on-coming element is increased to be sufficient to carry torque. Pressure for the off-going element is reduced below a torque transmitting amount once the stroked on-coming element has a sufficient torque carrying capacity. Torque capacities for the elements are determined from transmission output torque and acceleration and transmission input torque and acceleration. Feed forward or feedback terms for off-going and on-coming element torque capacities may be calculated using the transmission output torque, transmission input acceleration, and transmission input torque.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 10, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Gregory M. Pietron, Kevin D. Macfarlane, Diana Yanakiev, Joseph F. Kucharski, Bradley D. Riedle, Stephen M. Cicala, Yuji Fujii
  • Publication number: 20150344026
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, operation of a driveline disconnect clutch is adjusted to compensate for clutch wear and manufacturing tolerances.
    Type: Application
    Filed: August 5, 2015
    Publication date: December 3, 2015
    Inventors: Alex O'Connor Gibson, James William Loch McCallum, Seung-Hoon Lee, Gregory Michael Pietron, Yuji Fujii
  • Patent number: 9200702
    Abstract: An individual driving value is set as a function of an accelerator pedal position. In turn, a powertrain characteristic is set as a function of the individual driving style. The set powertrain characteristic may be modified on the basis of a feedback value corresponding to learned preferences of a driver. The modified powertrain characteristic is then either automatically implemented for operation of a powertrain or communicated as a choice for implementation. The feedback value is updated per a response to automatic implementation or choice communication.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: December 1, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Dimitar P. Feliv, Davorin D. Hrovat, Hong Jiang, Yuji Fujii, Hongtei E. Tseng, Zhengyu Dai, Steven J. Szwabowski, Felix Nedorezov, Christopher J. Teslak, Bradley D. Riedle
  • Publication number: 20150338255
    Abstract: A flow meter device of a fluid includes a time difference measuring means which measures time for a received wave to reach a zero cross point after the received wave exceeds a reference voltage, after transmission of a signal, and a reference voltage setting means which changes the reference voltage from a minimum value to a maximum value, recognizes peak voltages of waves of the received wave based on a plurality of inflection points at which a time difference measured by the time difference measuring means when the reference voltage is changed from the minimum voltage to the maximum voltage, is significantly changed, and automatically sets the reference voltage to a point between peak voltages of particular two waves based on a ratio between the peak voltages, and the reference voltage is changed from a voltage which is close to the peak voltages of the two waves and the peak voltages are newly recognized, when the reference voltage is newly set.
    Type: Application
    Filed: June 26, 2013
    Publication date: November 26, 2015
    Inventors: Yasuo KOBA, Kouichi TAKEMURA, Aoi WATANABE, Yuji FUJII
  • Publication number: 20150323364
    Abstract: A gas meter device of the present invention includes an inlet into which a fluid flows, and an outlet from which the fluid flows out, and is configured to derive a flow value of the fluid flowing from the inlet to the outlet.
    Type: Application
    Filed: June 25, 2013
    Publication date: November 12, 2015
    Inventors: Yukio SAKAGUCHI, Akihisa ADACHI, Yuji FUJII, Yuji NAKABAYASHI, Hirokazu GOTOU, Yasuharu KAWANO, Aoi WATANABE
  • Publication number: 20150323365
    Abstract: A flow meter device of the present invention comprises plural fluid passages which are provided between an inlet section into which a fluid flows and an outlet section from which the fluid flows out, and through which the fluid flows; flow value measuring units installed in the plural fluid passages, respectively, and configured to measure flow values of the fluid flowing through the fluid passages; and a control unit configured to determine whether or not to cause one or more of the flow value measuring units to stop a measuring operation of the flow value based on the flow values measured by the flow value measuring units, and whether or not to cause the one or more of the flow value measuring units to resume the measuring operation of the flow value, based on the flow value measured by the flow value measuring unit as a monitoring measuring unit which is other than the one or more of the flow value measuring units and is activated to perform the measuring operation of the flow value.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 12, 2015
    Inventors: Akihisa ADACHI, Yuji FUJII, Yuji NAKABAYASHI, Hirokazu GOTOU, Yukio SAKAGUCHI, Aoi WATANABE, Yasuharu KAWANO
  • Patent number: 9180857
    Abstract: A multiple ratio transmission having an input shaft, an output shaft and oncoming clutch and off-going clutch for effecting ratio upshifts is provided. The transmission also includes a transmission controller configured for controlling shifts. During the torque phase of a ratio upshift, the controller increases input torque. Next, the controller estimates an oncoming clutch target torque. The controller controls a torque input to ensure the off-going clutch remains locked. The controller measures an actual transmission value for a torque transmitting element of the transmission and corrects the oncoming clutch target torque using the actual transmission value whereby an increasing torque for the oncoming friction element is achieved with minimal torque transients along the output shaft during the upshift.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: November 10, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher John Teslak, Gregory Michael Pietron, Hongtei Eric Tseng, Yuji Fujii, Michael Glenn Fodor, Diana Yanakiev, Seung-Hoon Lee
  • Publication number: 20150316145
    Abstract: An individual driving value is set as a function of an accelerator pedal position. In turn, a powertrain characteristic is set as a function of the individual driving style. The set powertrain characteristic may be modified on the basis of a feedback value corresponding to learned preferences of a driver. The modified powertrain characteristic is then either automatically implemented for operation of a powertrain or communicated as a choice for implementation. The feedback value is updated per a response to automatic implementation or choice communication.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Dimitar P. Feliv, Davorin D. Hrovat, Hong Jiang, Yuji Fujii, Hongtei E. Tseng, Zhengyu Dai, Steven J. Szwabowski, Felix Nedorezov, Christopher J. Teslak, Bradley D. Riedle
  • Patent number: 9175658
    Abstract: Methods and systems are provided for controlling a vehicle engine coupled to a stepped-gear-ratio transmission. One example method comprises, in response to a first vehicle moving condition, shutting down the engine and at least partially disengaging the transmission while the vehicle is moving; and during a subsequent restart, while the vehicle is moving, starting the engine using starter motor assistance and adjusting a degree of engagement of a transmission clutch to adjust a torque transmitted to a wheel of the vehicle.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: November 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Ross Dykstra Pursifull, Gopichandra Surnilla, Joseph Norman Ulrey, Roger Lyle Huffmaster, Peter John Grutter, Yuji Fujii, Gregory Michael Pietron, Seung-Hoon Lee
  • Patent number: 9174573
    Abstract: A coaching system for drivers of vehicles monitors the power dissipation of a manual transmission clutch and, when the energy dissipated during an event is excessive, suggests modified driving technique. The system may monitor launch events, shift events, and steady state driving. The system may adjust the energy threshold at which a suggestion is provided based on vehicle weight or road gradient. The system may also adjust the energy threshold when an estimate of clutch temperature is elevated. The suggestion may be provided on a graphic display or may be provided verbally over a speaker. In some cases, the suggested may also be conveyed to a third party outside the vehicle.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: November 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Yuji Fujii, James William Loch McCallum, Christian Meyer, Seunghoon Lee
  • Publication number: 20150292926
    Abstract: A flow meter device includes: a first vibrator, a second vibrator, a control unit, a timekeeper, and an arithmetic operation unit. The arithmetic operation unit is configured to: determine whether or not a time difference between a propagation time in the forward direction and a propagation time in the reverse direction is less than a predetermined value; calculate a propagation time correction amount based on the time difference if it is determined that the time difference is less than the predetermined value; and calculate a flow rate of the fluid by using the propagation time correction amount.
    Type: Application
    Filed: October 29, 2013
    Publication date: October 15, 2015
    Inventors: Kouichi Takemura, Yuji Fujii, Yasuo Koba, Aoi Watanabe
  • Publication number: 20150268109
    Abstract: Various packaging designs for placement of a magnetic torque sensor at the output shaft of a front wheel drive transmission are provided. One design provides for mounting a sensor on a chain drive sprocket or integrating a sensor into a modified sprocket bearing mount. Another design provides for mounting a sensor at the grounded ring gear of a final planetary drive. Another design provides for mounting a sensor at the differential housing. Another design provides for mounting a sensor at the output planetary carrier hub/park gear. Another design provides for mounting a sensor at a multi-piece transfer gear face.
    Type: Application
    Filed: June 4, 2015
    Publication date: September 24, 2015
    Inventors: Gregory Michael Pietron, Nimrod Kapas, Yuji Fujii, Joseph F. Kucharski, Gregory Daniel Goleski, Jeffrey Edward Maurer