Patents by Inventor Yutaka Okazaki

Yutaka Okazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10199508
    Abstract: A miniaturized transistor, a transistor with low parasitic capacitance, a transistor with high frequency characteristics, or a semiconductor device including the transistor is provided. The semiconductor device includes a first insulator, an oxide semiconductor over the first insulator, a first conductor and a second conductor that are in contact with the oxide semiconductor, a second insulator that is over the first and second conductors and has an opening reaching the oxide semiconductor, a third insulator over the oxide semiconductor and the second insulator, and a fourth conductor over the third insulator. The first conductor includes a first region and a second region. The second conductor includes a third region and a fourth region. The second region faces the third region with the first conductor and the first insulator interposed therebetween. The second region is thinner than the first region. The third region is thinner than the fourth region.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: February 5, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshinobu Asami, Yutaka Okazaki, Motomu Kurata, Katsuaki Tochibayashi, Shinya Sasagawa, Kensuke Yoshizumi, Hideomi Suzawa
  • Patent number: 10141452
    Abstract: A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: November 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daigo Ito, Daisuke Matsubayashi, Masaharu Nagai, Yoshiaki Yamamoto, Takashi Hamada, Yutaka Okazaki, Shinya Sasagawa, Motomu Kurata, Naoto Yamade
  • Publication number: 20180277533
    Abstract: A miniaturized transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A transistor having a large amount of on-state current is provided. A semiconductor device including the transistor is provided. A semiconductor device with high integration is provided. A novel capacitor is provided. The capacitor includes a first conductor, a second conductor, and an insulator. The first conductor includes a region overlapping with the second conductor with the insulator provided therebetween. The first conductor includes tungsten and silicon. The insulator includes a silicon oxide film that is formed by oxidizing the first conductor.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Tetsuhiro TANAKA, Yutaka OKAZAKI
  • Publication number: 20180261633
    Abstract: A semiconductor device using an oxide semiconductor is provided with stable electric characteristics to improve the reliability. In a manufacturing process of a transistor including an oxide semiconductor film, an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a first crystalline oxide semiconductor film) is formed; oxygen is added to the oxide semiconductor film to amorphize at least part of the oxide semiconductor film, so that an amorphous oxide semiconductor film containing an excess of oxygen is formed; an aluminum oxide film is formed over the amorphous oxide semiconductor film; and heat treatment is performed thereon to crystallize at least part of the amorphous oxide semiconductor film, so that an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a second crystalline oxide semiconductor film) is formed.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 13, 2018
    Inventors: Junichi KOEZUKA, Naoto YAMADE, Yuhei SATO, Yutaka OKAZAKI, Shunpei YAMAZAKI
  • Publication number: 20180248043
    Abstract: A semiconductor device includes a first oxide insulating layer over a first insulating layer, an oxide semiconductor layer over the first oxide insulating layer, a source electrode layer and a drain electrode layer over the oxide semiconductor layer, a second insulating layer over the source electrode layer and the drain electrode layer, a second oxide insulating layer over the oxide semiconductor layer, a gate insulating layer over the second oxide insulating layer, a gate electrode layer over the gate insulating layer, and a third insulating layer over the second insulating layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer. A side surface portion of the second insulating layer is in contact with the second oxide insulating layer. The gate electrode layer includes a first region and a second region. The first region has a width larger than that of the second region.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 30, 2018
    Inventors: Yoshinobu Asami, Yutaka Okazaki, Satoru Okamoto, Shinya Sasagawa
  • Publication number: 20180197997
    Abstract: A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 12, 2018
    Inventors: Daigo ITO, Daisuke Matsubayashi, Masaharu Nagai, Yoshiaki Yamamoto, Takashi Hamada, Yutaka Okazaki, Shinya Sasagawa, Motomu Kurata, Naoto Yamade
  • Publication number: 20180190827
    Abstract: A semiconductor device in which parasitic capacitance is reduced is provided. A first insulating layer is deposited over a substrate. A first oxide insulating layer and an oxide semiconductor layer are deposited over the first insulating layer. A second oxide insulating layer is deposited over the oxide semiconductor layer and the first insulating layer. A second insulating layer and a first conductive layer are deposited over the second oxide insulating layer. A gate electrode layer, a gate insulating layer, and a third oxide insulating layer are formed by etching. A sidewall insulating layer including a region in contact with a side surface of the gate electrode layer is formed. A second conductive layer is deposited over the gate electrode layer, the sidewall insulating layer, the oxide semiconductor layer, and the first insulating layer. A third conductive layer is deposited over the second conductive layer. A low-resistance region is formed in the oxide semiconductor layer by performing heat treatment.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka OKAZAKI, Daisuke MATSUBAYASHI, Yuichi SATO
  • Patent number: 10014413
    Abstract: To provide a semiconductor device that includes an oxide semiconductor and is miniaturized while keeping good electrical properties. In the semiconductor device, an oxide semiconductor layer filling a groove is surrounded by insulating layers including an aluminum oxide film containing excess oxygen. Excess oxygen contained in the aluminum oxide film is supplied to the oxide semiconductor layer, in which a channel is formed, by heat treatment in a manufacturing process of the semiconductor device. Moreover, the aluminum oxide film forms a barrier against oxygen and hydrogen, which inhibits the removal of oxygen from the oxide semiconductor layer surrounded by the insulating layers including an aluminum oxide film and the entry of impurities such as hydrogen in the oxide semiconductor layer. Thus, a highly purified intrinsic oxide semiconductor layer can be obtained. The threshold voltage is controlled effectively by gate electrode layers formed over and under the oxide semiconductor layer.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: July 3, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideomi Suzawa, Yutaka Okazaki
  • Patent number: 10002866
    Abstract: A miniaturized transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A transistor having a large amount of on-state current is provided. A semiconductor device including the transistor is provided. A semiconductor device with high integration is provided. A novel capacitor is provided. The capacitor includes a first conductor, a second conductor, and an insulator. The first conductor includes a region overlapping with the second conductor with the insulator provided therebetween. The first conductor includes tungsten and silicon. The insulator includes a silicon oxide film that is formed by oxidizing the first conductor.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 19, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tetsuhiro Tanaka, Yutaka Okazaki
  • Patent number: 9991397
    Abstract: To provide a semiconductor device that includes an oxide semiconductor and is miniaturized while keeping good electrical properties. In the semiconductor device, an oxide semiconductor layer is surrounded by an insulating layer including an aluminum oxide film containing excess oxygen. Excess oxygen in the aluminum oxide film is supplied to the oxide semiconductor layer including a channel by heat treatment in a manufacturing process of the semiconductor device. Furthermore, the aluminum oxide film forms a barrier against oxygen and hydrogen. It is thus possible to suppress the removal of oxygen from the oxide semiconductor layer surrounded by the insulating layer including an aluminum oxide film, and the entry of impurities such as hydrogen into the oxide semiconductor layer; as a result, the oxide semiconductor layer can be made highly intrinsic. In addition, gate electrode layers over and under the oxide semiconductor layer control the threshold voltage effectively.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 5, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideomi Suzawa, Yutaka Okazaki
  • Publication number: 20180151743
    Abstract: To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 31, 2018
    Inventors: Shunpei YAMAZAKI, Akihisa SHIMOMURA, Yuhei SATO, Yasumasa YAMANE, Yoshitaka YAMAMOTO, Hideomi SUZAWA, Tetsuhiro TANAKA, Yutaka OKAZAKI, Naoki OKUNO, Takahisa ISHIYAMA
  • Publication number: 20180138208
    Abstract: To provide a semiconductor device capable of retaining data for a long time. The semiconductor device includes a first transistor, an insulator covering the first transistor, and a second transistor over the insulator. The first transistor includes a first gate electrode, a second gate electrode overlapping with the first gate electrode, and a semiconductor between the first gate electrode and the second gate electrode. The first gate electrode is electrically connected to one of a source and a drain of the second transistor.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 17, 2018
    Inventors: Daigo ITO, Yutaka OKAZAKI, Takahisa ISHIYAMA
  • Patent number: 9954112
    Abstract: A semiconductor device includes a first oxide insulating layer over a first insulating layer, an oxide semiconductor layer over the first oxide insulating layer, a source electrode layer and a drain electrode layer over the oxide semiconductor layer, a second insulating layer over the source electrode layer and the drain electrode layer, a second oxide insulating layer over the oxide semiconductor layer, a gate insulating layer over the second oxide insulating layer, a gate electrode layer over the gate insulating layer, and a third insulating layer over the second insulating layer, the second oxide insulating layer, the gate insulating layer, and the gate electrode layer. A side surface portion of the second insulating layer is in contact with the second oxide insulating layer. The gate electrode layer includes a first region and a second region. The first region has a width larger than that of the second region.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: April 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Yutaka Okazaki, Satoru Okamoto, Shinya Sasagawa
  • Patent number: 9954113
    Abstract: A transistor with favorable electrical characteristics is provided. A transistor with stable electrical characteristics is provided. A semiconductor device having a high degree of integration is provided. Side surfaces of an oxide semiconductor layer in which a channel is formed are covered with an oxide semiconductor layer, whereby impurity diffusion from the side surfaces of the oxide semiconductor into the inside can be prevented. A gate electrode is formed by a damascene process, whereby transistors can be miniaturized and formed at a high density.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Satoru Okamoto, Yutaka Okazaki, Yoshinobu Asami, Hiroaki Honda, Takuya Tsurume
  • Patent number: 9911767
    Abstract: A semiconductor device using an oxide semiconductor is provided with stable electric characteristics to improve the reliability. In a manufacturing process of a transistor including an oxide semiconductor film, an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a first crystalline oxide semiconductor film) is formed; oxygen is added to the oxide semiconductor film to amorphize at least part of the oxide semiconductor film, so that an amorphous oxide semiconductor film containing an excess of oxygen is formed; an aluminum oxide film is formed over the amorphous oxide semiconductor film; and heat treatment is performed thereon to crystallize at least part of the amorphous oxide semiconductor film, so that an oxide semiconductor film containing a crystal having a c-axis which is substantially perpendicular to a top surface thereof (also called a second crystalline oxide semiconductor film) is formed.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 6, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Naoto Yamade, Yuhei Sato, Yutaka Okazaki, Shunpei Yamazaki
  • Patent number: 9911861
    Abstract: A semiconductor device in which parasitic capacitance is reduced is provided. A first insulating layer is deposited over a substrate. A first oxide insulating layer and an oxide semiconductor layer are deposited over the first insulating layer. A second oxide insulating layer is deposited over the oxide semiconductor layer and the first insulating layer. A second insulating layer and a first conductive layer are deposited over the second oxide insulating layer. A gate electrode layer, a gate insulating layer, and a third oxide insulating layer are formed by etching. A sidewall insulating layer including a region in contact with a side surface of the gate electrode layer is formed. A second conductive layer is deposited over the gate electrode layer, the sidewall insulating layer, the oxide semiconductor layer, and the first insulating layer. A third conductive layer is deposited over the second conductive layer. A low-resistance region is formed in the oxide semiconductor layer by performing heat treatment.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: March 6, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Okazaki, Daisuke Matsubayashi, Yuichi Sato
  • Patent number: 9882059
    Abstract: To provide a transistor having a high on-state current. A semiconductor device includes a first insulator containing excess oxygen, a first oxide semiconductor over the first insulator, a second oxide semiconductor over the first oxide semiconductor, a first conductor and a second conductor which are over the second oxide semiconductor and are separated from each other, a third oxide semiconductor in contact with side surfaces of the first oxide semiconductor, a top surface and side surfaces of the second oxide semiconductor, a top surface of the first conductor, and a top surface of the second conductor, a second insulator over the third oxide semiconductor, and a third conductor facing a top surface and side surfaces of the second oxide semiconductor with the second insulator and the third oxide semiconductor therebetween. The first oxide semiconductor has a higher oxygen-transmitting property than the third oxide semiconductor.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: January 30, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Yuhei Sato, Yasumasa Yamane, Yoshitaka Yamamoto, Hideomi Suzawa, Tetsuhiro Tanaka, Yutaka Okazaki, Naoki Okuno, Takahisa Ishiyama
  • Publication number: 20180026140
    Abstract: A miniaturized transistor, a transistor with low parasitic capacitance, a transistor with high frequency characteristics, or a semiconductor device including the transistor is provided. The semiconductor device includes a first insulator, an oxide semiconductor over the first insulator, a first conductor and a second conductor that are in contact with the oxide semiconductor, a second insulator that is over the first and second conductors and has an opening reaching the oxide semiconductor, a third insulator over the oxide semiconductor and the second insulator, and a fourth conductor over the third insulator. The first conductor includes a first region and a second region. The second conductor includes a third region and a fourth region. The second region faces the third region with the first conductor and the first insulator interposed therebetween. The second region is thinner than the first region. The third region is thinner than the fourth region.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 25, 2018
    Inventors: Shunpei YAMAZAKI, Yoshinobu ASAMI, Yutaka OKAZAKI, Motomu KURATA, Katsuaki TOCHIBAYASHI, Shinya SASAGAWA, Kensuke YOSHIZUMI, Hideomi SUZAWA
  • Patent number: 9871059
    Abstract: A first conductive film overlapping with an oxide semiconductor film is formed over a gate insulating film, a gate electrode is formed by selectively etching the first conductive film using a resist subjected to electron beam exposure, a first insulating film is formed over the gate insulating film and the gate electrode, removing a part of the first insulating film while the gate electrode is not exposed, an anti-reflective film is formed over the first insulating film, the anti-reflective film, the first insulating film and the gate insulating film are selectively etched using a resist subjected to electron beam exposure, and a source electrode in contact with one end of the oxide semiconductor film and one end of the first insulating film and a drain electrode in contact with the other end of the oxide semiconductor film and the other end of the first insulating film are formed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 16, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Yutaka Okazaki, Kazuya Hanaoka, Shinya Sasagawa, Motomu Kurata
  • Patent number: 9871145
    Abstract: A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 16, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daigo Ito, Daisuke Matsubayashi, Masaharu Nagai, Yoshiaki Yamamoto, Takashi Hamada, Yutaka Okazaki, Shinya Sasagawa, Motomu Kurata, Naoto Yamade