Patents by Inventor Yutaka Shinagawa

Yutaka Shinagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170040058
    Abstract: In a memory unit, voltages required for operations of a capacity transistor in a first well and a writing transistor in a second well are separately applied to a first deep well and a second deep well, without the voltages on the first deep well and the second deep well being restricted by each other. Thus, in the memory unit, each of a voltage difference between the first deep well and the first well and a voltage difference between the second deep well and the second well is made smaller than a voltage difference (18 [V]), at which a tunneling effect occurs, and accordingly a junction voltage between the first deep well and the first well and a junction voltage between the second deep well and the second well are low.
    Type: Application
    Filed: April 20, 2015
    Publication date: February 9, 2017
    Inventors: Yutaka Shinagawa, Hideo Kasai, Yasuhiko Kawashima, Ryotaro Sakurai, Yasuhiro Taniguchi
  • Patent number: 9502109
    Abstract: Provided is a non-volatile semiconductor memory device capable of reliably preventing a malfunction of a read transistor without increasing the number of bit lines. In a non-volatile semi conductor memory device (1), program transistors (5a, 5b) and erase transistors (3a, 3b) serving as charge transfer paths during data programming and erasure are provided while a second bit line (BLN1) connected to the program transistor (5a) in a first cell (2a) for performing data programming also serves as a reading bit line in the other second cell (2b) by switching switch transistors (SWa, SWb) so that malfunctions of read transistors (4a, 4b) that occur because the read transistors are used for data programming and erasure can be reliably prevented without the number of bit lines being increased.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 22, 2016
    Assignee: FLOADIA CORPORATION
    Inventors: Yasuhiro Taniguchi, Hideo Kasai, Yutaka Shinagawa, Kosuke Okuyama
  • Publication number: 20160336074
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: August 1, 2016
    Publication date: November 17, 2016
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 9412459
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: March 16, 2014
    Date of Patent: August 9, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 9343166
    Abstract: A non-volatile memory includes a plurality of word lines, power supply units are provided for word line columns, a different unit voltage is applied for each of power supply units depending on whether a selected memory cell exists in the column, a switching mechanism in each power supply unit is switched by the word line depending on a voltage value on a control line, a charge storage gate voltage or inhibition gate voltage is applied for each of the word lines so that the inhibition gate voltage value and a bit line voltage value can be freely set for each of the word line columns to values at which occurrence of disturbance can be suppressed. A plurality of power supply units are connected to the control line in a common row direction, and a row-direction address decoder, which is independent for each of the word line columns is not required.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 17, 2016
    Assignee: FLOADIA CORPORATION
    Inventors: Hideo Kasai, Yutaka Shinagawa, Yasuhiro Taniguchi
  • Patent number: 9318196
    Abstract: In a non-volatile semiconductor memory device capable of programming SRAM data in an SRAM into a non-volatile memory unit while implementing a high-speed operation in the SRAM, a voltage required to program the SRAM data into the non-volatile memory unit can be lowered. Thus, the SRAM can be operated at high speed with a low power supply voltage because the thickness of a gate insulating film of each of a first access transistor, a second access transistor, a first load transistor, a second load transistor, a first drive transistor, and a second drive transistor constituting the SRAM connected to the non-volatile memory unit can be set to 4 [nm] or less. Therefore, the SRAM data in the SRAM can be programmed into the non-volatile memory unit while a high-speed operation in the SRAM can be implemented.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: April 19, 2016
    Assignee: FLOADIA CORPORATION
    Inventors: Hideo Kasai, Yutaka Shinagawa, Ryotaro Sakurai, Yasuhiro Taniguchi, Kosuke Okuyama
  • Publication number: 20150318048
    Abstract: To propose a non-volatile semiconductor memory device capable of suppressing occurrence of disturbance more greatly than in a conventional technique while achieving miniaturization. A plurality of word lines are formed in a matrix in the non-volatile semiconductor memory device, power supply units are respectively provided for word line columns (memory wells), a different unit voltage is applied for each of power supply units depending on whether or not a selected memory cell exists in the word line column, a switching mechanism in each of the power supply units is switched by the word line depending on a value of a voltage on a control line, a charge storage gate voltage or a charge storage inhibition gate voltage is individually applied for each of the word lines so that the charge storage inhibition gate voltage value and a bit line voltage value can be freely set for each of the word line columns to values at which occurrence of disturbance can be suppressed.
    Type: Application
    Filed: June 21, 2013
    Publication date: November 5, 2015
    Inventors: Hideo Kasai, Yutaka Shinagawa, Yasuhiro Taniguchi
  • Publication number: 20150262666
    Abstract: Provided is a non-volatile semiconductor memory device capable of reliably preventing a malfunction of a read transistor without increasing the number of bit lines. In a non-volatile semi conductor memory device (1), program transistors (5a, 5b) and erase transistors (3a, 3b) serving as charge transfer paths during data programming and erasure are provided while a second bit line (BLN1) connected to the program transistor (5a) in a first cell (2a) for performing data programming also serves as a reading bit line in the other second cell (2b) by switching switch transistors (SWa, SWb) so that malfunctions of read transistors (4a, 4b) that occur because the read transistors are used for data programming and erasure can be reliably prevented without the number of bit lines being increased.
    Type: Application
    Filed: September 27, 2013
    Publication date: September 17, 2015
    Applicant: Floadia Corporation
    Inventors: Yasuhiro Taniguchi, Hideo Kasai, Yutaka Shinagawa, Kosuke Okuyama
  • Patent number: 8963229
    Abstract: A non-volatile semiconductor memory device is proposed whereby voltage can be more flexibly set in accumulating electric charges into a selected memory cell transistor in comparison with a conventional device. In a non-volatile semiconductor memory device (1), when a selected memory cell transistor (115) is caused to accumulate electric charges, high voltage as writing prevention voltage is applied from a PMOS transistor (9b) while low voltage as writing voltage is applied from an NMOS transistor (15a). Thus, a role of applying voltage to either the selected memory cell transistor (115) or a non-selected memory cell transistor (116) is shared by the PMOS transistor (9b) and the NMOS transistor (15a). Therefore, the gate voltage and the source voltage of the PMOS transistor (9b) and those of the NMOS transistor (15a) can be separately adjusted, and gate-to-substrate voltage thereof can be finally set to be, for instance, 4[V] or etc.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: February 24, 2015
    Assignee: Floadia Corporation
    Inventors: Yutaka Shinagawa, Hideo Kasai, Yasuhiro Taniguchi
  • Publication number: 20140203345
    Abstract: A non-volatile semiconductor memory device is proposed whereby voltage can be more flexibly set in accumulating electric charges into a selected memory cell transistor in comparison with a conventional device. In a non-volatile semiconductor memory device (1), when a selected memory cell transistor (115) is caused to accumulate electric charges, high voltage as writing prevention voltage is applied from a PMOS transistor (9b) while low voltage as writing voltage is applied from an NMOS transistor (15a). Thus, a role of applying voltage to either the selected memory cell transistor (115) or a non-selected memory cell transistor (116) is shared by the PMOS transistor (9b) and the NMOS transistor (15a). Therefore, the gate voltage and the source voltage of the PMOS transistor (9b) and those of the NMOS transistor (15a) can be separately adjusted, and gate-to-substrate voltage thereof can be finally set to be, for instance, 4[V] or etc.
    Type: Application
    Filed: September 18, 2012
    Publication date: July 24, 2014
    Applicant: Floadia Corporation a japanese corporation
    Inventors: Yutaka Shinagawa, Hideo Kasai, Yasuhiro Taniguchi
  • Publication number: 20140198577
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: March 16, 2014
    Publication date: July 17, 2014
    Applicants: HITACHI ULSI SYSTEMS CO., LTD., RENESAS ELECTRONICS CORPORATION
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 8698224
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: April 20, 2013
    Date of Patent: April 15, 2014
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Patent number: 8576643
    Abstract: A semiconductor integrated circuit has a central processing unit and a rewritable nonvolatile memory area disposed in an address space of the central processing unit. The nonvolatile memory area has a first nonvolatile memory area and a second nonvolatile memory area, which memorize information depending on the difference of threshold voltages. The first nonvolatile memory area has a maximum variation width of a threshold voltage for memorizing an information set larger than that of the second nonvolatile memory area. The first nonvolatile memory area can be prioritized to expedite a read speed of the memory information, and the second nonvolatile memory area can be prioritized to guarantee the number of times of rewrite operation of memory information.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: November 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Shinagawa, Takeshi Kataoka, Eiichi Ishikawa, Toshihiro Tanaka, Kazumasa Yanagisawa, Kazufumi Suzukawa
  • Publication number: 20130235668
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: April 20, 2013
    Publication date: September 12, 2013
    Applicants: HITACHI ULSI SYSTEMS CO., LTD., RENESAS ELECTRONICS CORPORATION
    Inventors: Toshihiro TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takashi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 8426904
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: April 23, 2013
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Toshihiro Tanaka, Yukiko Umemoto, Mitsuru Hiraki, Yutaka Shinagawa, Masamichi Fujito, Kazufumi Suzukawa, Hiroyuki Tanikawa, Takashi Yamaki, Yoshiaki Kamigaki, Shinichi Minami, Kozo Katayama, Nozomu Matsuzaki
  • Publication number: 20120179953
    Abstract: A semiconductor integrated circuit has a central processing unit and a rewritable nonvolatile memory area disposed in an address space of the central processing unit. The nonvolatile memory area has a first nonvolatile memory area and a second nonvolatile memory area, which memorize information depending on the difference of threshold voltages. The first nonvolatile memory area has the maximum variation width of a threshold voltage for memorizing information set larger than that of the second nonvolatile memory area. The first nonvolatile memory area can be prioritized to expedite a read speed of the memory information, and the second nonvolatile memory area can be prioritized to guarantee the number of times of rewrite operation of memory information more.
    Type: Application
    Filed: February 8, 2012
    Publication date: July 12, 2012
    Inventors: Yutaka SHINAGAWA, Takeshi KATAOKA, Eiichi ISHIKAWA, Toshihiro TANAKA, Kazumasa YANAGISAWA, Kazufumi SUZUKAWA
  • Patent number: 8130571
    Abstract: A semiconductor integrated circuit has a central processing unit and a rewritable nonvolatile memory area disposed In an address space of the central processing unit. The nonvolatile memory area has a first nonvolatile memory area and a second nonvolatile memory area, which memorize information depending on the difference of threshold voltages. The first nonvolatile memory area has the maximum variation width of a threshold voltage for memorizing information set larger than that of the second nonvolatile memory area. When the maximum variation width of the threshold voltage for memorizing information is larger, since stress to a memory cell owing to a rewrite operation of memory information becomes larger, it is inferior In a point of guaranteeing the number of times of rewrite operation; however, since a read current becomes larger, a read speed of memory information can be expedited.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Shinagawa, Takeshi Kataoka, Eiichi Ishikawa, Toshihiro Tanaka, Kazumasa Yanagisawa, Kazufumi Suzukawa
  • Publication number: 20110309428
    Abstract: A semiconductor device includes a plurality of nonvolatile memory cells (1). Each of the nonvolatile memory cells comprises a MOS type first transistor section (3) used for information storage, and a MOS type second transistor section (4) which selects the first transistor section. The second transistor section has a bit line electrode (16) connected to a bit line, and a control gate electrode (18) connected to a control gate control line. The first transistor section has a source line electrode (10) connected to a source line, a memory gate electrode (14) connected to a memory gate control line, and a charge storage region (11) disposed directly below the memory gate electrode. A gate withstand voltage of the second transistor section is lower than that of the first transistor section.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 22, 2011
    Inventors: TOSHIHIRO TANAKA, Yukiko UMEMOTO, Mitsuru HIRAKI, Yutaka SHINAGAWA, Masamichi FUJITO, Kazufumi SUZUKAWA, Hiroyuki TANIKAWA, Takeshi YAMAKI, Yoshiaki KAMIGAKI, Shinichi MINAMI, Kozo KATAYAMA, Nozomu MATSUZAKI
  • Patent number: 8050085
    Abstract: A semiconductor processing device according to the invention includes a first non-volatile memory (21) for erasing stored information on a first data length unit, a second non-volatile memory (22) for erasing stored information on a second data length unit, and a central processing unit (2), and capable of inputting/outputting encrypted data from/to an outside. The first non-volatile memory is used for storing an encryption key to be utilized for encrypting the data. The second non-volatile memory is used for storing a program to be processed by the central processing unit. The non-volatile memories to be utilized for storing the program and for storing the encryption key are separated from each other, and the data lengths of the erase units of information to be stored in the non-volatile memories are defined separately.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: November 1, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Masatoshi Takahashi, Takanori Yamazoe, Kozo Katayama, Toshihiro Tanaka, Yutaka Shinagawa, Hiroshi Watase, Takeo Kanai, Nobutaka Nagasaki
  • Patent number: RE46203
    Abstract: A non-volatile semiconductor memory device is proposed whereby voltage can be more flexibly set in accumulating electric charges into a selected memory cell transistor in comparison with a conventional device. In a non-volatile semiconductor memory device (1), when a selected memory cell transistor (115) is caused to accumulate electric charges, high voltage as writing prevention voltage is applied from a PMOS transistor (9b) while low voltage as writing voltage is applied from an NMOS transistor (15a). Thus, a role of applying voltage to either the selected memory cell transistor (115) or a non-selected memory cell transistor (116) is shared by the PMOS transistor (9b) and the NMOS transistor (15a). Therefore, the gate voltage and the source voltage of the PMOS transistor (9b) and those of the NMOS transistor (15a) can be separately adjusted, and gate-to-substrate voltage thereof can be finally set to be, for instance, 4[V] or etc.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: November 15, 2016
    Assignee: Floadia Corporation
    Inventors: Yutaka Shinagawa, Hideo Kasai, Yasuhiro Taniguchi