Patents by Inventor Zhanjie Li

Zhanjie Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220013139
    Abstract: The present disclosure generally relates to spin-orbital torque (SOT) differential reader designs. The SOT differential reader is a multi-terminal device that comprises a first shield, a first spin hall layer, a first free layer, a gap layer, a second spin hall layer, a second free layer, and a second shield. The gap layer functions as an electrode and is disposed between the first spin hall layer and the second spin hall layer. Electrical lead connections are located about the first spin hall layer, the second spin hall layer, the gap layer, the first shield, and/or the second shield. The electrical lead connections facilitate the flow of current and/or voltage from a negative lead to a positive lead. The positioning of the electrical lead connections and the positioning of the SOT differential layers improves reader resolution without decreasing the shield-to-shield spacing (i.e., read-gap).
    Type: Application
    Filed: September 23, 2020
    Publication date: January 13, 2022
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Xiaoyong LIU, Zhigang BAI, Zhanjie LI, Kuok San HO, Hisashi TAKANO
  • Patent number: 11220513
    Abstract: The present invention provides unified synthesis of the C1-C19 building blocks of halichondrins and analogs thereof using selective coupling of poly-halogenated nucleophiles in chromium-mediated coupling reactions. The present invention also provides a practical and efficient synthesis of C20-C38 building blocks of halichondrins and analogs thereof. Also provided herein are general methods of selective activation and coupling of poly-halogenated analogs with an aldehyde. The provided coupling reactions are selective for halo-enone and halo-acetylenic ketal over vinyl halide and halide attached to a sp hybridized carbon. The provided efficient selective coupling reactions can allow easy access to the C1-C19 building blocks and C20-C38 building blocks of halichondrins and analogs thereof with limited or no purification or separation of the intermediates.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: January 11, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Yoshito Kishi, Wuming Yan, Jingwei Li, Zhanjie Li, Kenzo Yahata
  • Patent number: 11222656
    Abstract: The present disclosure generally relates to spin-orbital torque (SOT) differential reader designs. The SOT differential reader is a multi-terminal device that comprises a first shield, a first spin hall layer, a first free layer, a gap layer, a second spin hall layer, a second free layer, and a second shield. The gap layer functions as an electrode and is disposed between the first spin hall layer and the second spin hall layer. Electrical lead connections are located about the first spin hall layer, the second spin hall layer, the gap layer, the first shield, and/or the second shield. The electrical lead connections facilitate the flow of current and/or voltage from a negative lead to a positive lead. The positioning of the electrical lead connections and the positioning of the SOT differential layers improves reader resolution without decreasing the shield-to-shield spacing (i.e., read-gap).
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: January 11, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Xiaoyong Liu, Zhigang Bai, Zhanjie Li, Kuok San Ho, Hisashi Takano
  • Publication number: 20220005498
    Abstract: The present disclosure generally relates to spin-orbital torque (SOT) differential reader designs. The SOT differential reader is a multi-terminal device that comprises a first shield, a first spin hall effect layer, a first free layer, a gap layer, a second spin hall effect layer, a second free layer, and a second shield. The gap layer is disposed between the first spin hall effect layer and the second spin hall effect layer. Electrical lead connections are located about the first spin hall effect layer, the second spin hall effect layer, the gap layer, the first shield, and/or the second shield. The electrical lead connections facilitate the flow of current and/or voltage from a negative lead to a positive lead. The positioning of the electrical lead connections and the positioning of the SOT differential layers improves reader resolution without decreasing the shield-to-shield spacing (i.e., read-gap).
    Type: Application
    Filed: August 5, 2021
    Publication date: January 6, 2022
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Xiaoyong LIU, Zhigang BAI, Zhanjie LI, Kuok San HO, Hisashi TAKANO
  • Publication number: 20210405131
    Abstract: The present disclosure generally relates to sensor device, such as a magnetic sensor bridge, that utilizes a dual free layer (DFL) structure. The device includes a plurality of resistors that each includes the same DFL structure. Adjacent the DFL structure is a magnetic structure that can include a permanent magnet, an antiferromagnetic (AFM) layer having a synthetic AFM (SAF) structure thereon, a permanent magnetic having a SAF structure thereon, or an AFM layer having a ferromagnetic layer thereon. The DFL structures are aligned with different layers of the magnetic structures to differentiate the resistors. The different alignment and/or different magnetic structures result in a decrease in production time due to reduced complexity and, thus, reduces costs.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Inventors: Xiaoyong LIU, Quang LE, Zhigang BAI, Daniele MAURI, Zhanjie LI, Kuok San HO, Thao A. NGUYEN, Rajeev NAGABHIRAVA
  • Publication number: 20210409601
    Abstract: Aspects of the present disclosure relate to optical devices and related methods that facilitate independent control of movement of lenses and image sensors in camera systems. In one example, an image sensor is movable independently of and relative to a lens, and the lens is movable independently of the image sensor. In one example, an optical device includes a lens, and an image sensor disposed below the lens. The image sensor is movable relative to the lens. The optical device includes a plurality of magnets disposed about the lens, a plurality of vertical coil structures coiled in one or more vertical planes, and one or more horizontal coil structures coiled in one or more horizontal planes. The plurality of vertical coil structures are configured to, when powered, move the image sensor relative to the lens. The one or more horizontal coil structures are configured to, when powered, move the lens.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Quang LE, Zhigang BAI, Xiaoyong LIU, Zhanjie LI, Kuok San HO, Rajeev NAGABHIRAVA
  • Publication number: 20210409600
    Abstract: Aspects of the present disclosure relate to optical devices and related methods that facilitate independent control of movement of lenses and image sensors in camera systems. In one example, an image sensor is movable independently of and relative to a lens, and the lens is movable independently of the image sensor. In one example, an optical device includes a lens, and an image sensor disposed below the lens. The image sensor is movable relative to the lens. The optical device includes a plurality of magnets disposed about the lens, a plurality of vertical coil structures coiled in one or more vertical planes, and one or more horizontal coil structures coiled in one or more horizontal planes. The plurality of vertical coil structures are configured to, when powered, move the image sensor relative to the lens. The one or more horizontal coil structures are configured to, when powered, move the lens.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Quang Le, Zhigang BAI, Xiaoyong LIU, Zhanjie LI, Kuok San HO, Rajeev NAGABHIRAVA
  • Publication number: 20210409602
    Abstract: Aspects of the present disclosure generally relate to optical devices and related methods that facilitate tilt in camera systems, such as tilt of a lens. In one example, an optical device includes a lens, an image sensor disposed below the lens, a plurality of magnets disposed about the lens, and a plurality of: (1) vertical coil structures coiled in one or more vertical planes and (2) horizontal coil structures coiled in one or more horizontal planes. When power is applied, the coil structures can generate magnetic fields that, in the presence of the magnets, cause relative movement of the coil structures and associated structures. The plurality of vertical coil structures are configured to horizontally move the lens. The plurality of horizontal coil structures are configured to tilt the lens when differing electrical power is applied to at least two of the plurality of horizontal coil structures.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Quang Le, Rajeev Nagabhirava, Kuok San Ho, Zhigang Bai, Zhanjie Li, Xiaoyong Liu, Daniele Mauri
  • Patent number: 11212447
    Abstract: Aspects of the present disclosure generally relate to optical devices and related methods that facilitate tilt in camera systems, such as tilt of a lens. In one example, an optical device includes a lens, an image sensor disposed below the lens, a plurality of magnets disposed about the lens, and a plurality of: (1) vertical coil structures coiled in one or more vertical planes and (2) horizontal coil structures coiled in one or more horizontal planes. When power is applied, the coil structures can generate magnetic fields that, in the presence of the magnets, cause relative movement of the coil structures and associated structures. The plurality of vertical coil structures are configured to horizontally move the lens. The plurality of horizontal coil structures are configured to tilt the lens when differing electrical power is applied to at least two of the plurality of horizontal coil structures.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: December 28, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Quang Le, Rajeev Nagabhirava, Kuok San Ho, Zhigang Bai, Zhanjie Li, Xiaoyong Liu, Daniele Mauri
  • Patent number: 11205446
    Abstract: The present disclosure generally relates to magnetic media devices, and more specifically, to a magnetic media drive employing a magnetic recording head. The recording head includes a main pole, a trailing shield hot seed layer, a spin Hall layer disposed between the main pole and the trailing shield hot seed layer, and a spin-torque layer disposed between the main pole and the trailing shield hot seed layer. Spin-orbit torque (SOT) is generated from the spin Hall layer. The spin-torque layer magnetization switching or precession is induced by the SOT. The SOT based head reduces the switching current and the Vjump due to higher spin polarization ratio, which improves energy efficiency. In addition, the spin Hall layer and the spin-torque layer are easier to form compared to the conventional pseudo spin-valve structure.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 21, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Zhanjie Li, Suping Song, Kuok San Ho
  • Publication number: 20210390976
    Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a first write head, a second write head, at least one read head, and a thermal fly height control element. The first write head is a wide writing write head comprising a first main pole and a first trailing shield. The second write head a narrow writing write head comprising a second main pole, a trailing gap, a second trailing shield, and one or more side shields. The first main pole has a shorter height and a greater width than the second main pole. The second main pole has a curved or U-shaped surface disposed adjacent to the trailing gap. The thermal fly height control element and the at least one read head are aligned with a center axis of the second main pole of the second write head.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 16, 2021
    Applicant: Western Digital Technologies, Inc.
    Inventors: Thao A. NGUYEN, Michael Kuok San HO, Zhigang BAI, Zhanjie LI, Quang LE
  • Patent number: 11172131
    Abstract: Aspects of the present disclosure generally relate to optical devices and related methods that facilitate tilt in camera systems, such as tilt of a lens. In one example, an optical device includes a lens, an image sensor disposed below the lens, a plurality of magnets disposed about the lens, and a plurality of: (1) vertical coil structures coiled in one or more vertical planes and (2) horizontal coil structures coiled in one or more horizontal planes. When power is applied, the coil structures can generate magnetic fields that, in the presence of the magnets, cause relative movement of the coil structures and associated structures. The plurality of vertical coil structures are configured to horizontally move the lens. The plurality of horizontal coil structures are configured to tilt the lens when differing electrical power is applied to at least two of the plurality of horizontal coil structures.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 9, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Quang Le, Rajeev Nagabhirava, Kuok San Ho, Zhigang Bai, Zhanjie Li, Xiaoyong Liu, Daniele Mauri
  • Patent number: 11170804
    Abstract: A magnetic recording head includes a trailing shield and a main pole. A trailing shield gap is between the trailing shield and the main pole. A spin orbital torque structure is within the trailing shield gap. The spin orbital torque structure includes a spin torque layer having a first side and a second side at a media facing surface. A first spin Hall layer is along the first side of the spin torque layer. A second spin Hall layer is along the second side of the spin torque layer. The first spin Hall layer comprises a heavy metal material having a positive spin Hall angle. The second spin Hall layer comprises a heavy metal material having a negative spin Hall angle.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: November 9, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Zhanjie Li, Suping Song, Lijie Guan
  • Patent number: 11127417
    Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a first write head, a second write head, at least one read head, and a thermal fly height control element. The first write head is a wide writing write head comprising a first main pole and a first trailing shield. The second write head a narrow writing write head comprising a second main pole, a trailing gap, a second trailing shield, and one or more side shields. The first main pole has a shorter height and a greater width than the second main pole. The second main pole has a curved or U-shaped surface disposed adjacent to the trailing gap. The thermal fly height control element and the at least one read head are aligned with a center axis of the second main pole of the second write head.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: September 21, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Thao A. Nguyen, Michael Kuok San Ho, Zhigang Bai, Zhanjie Li, Quang Le
  • Publication number: 20210280208
    Abstract: The present disclosure generally relates to data storage devices, and more specifically, to a magnetic media drive employing a magnetic recording head. The head includes a main pole at a media facing surface (MFS), a trailing shield at the MFS, and a heavy metal layer disposed between the main pole and the trailing shield at the MFS. Spin-orbit torque (SOT) is generated from the heavy metal layer and transferred to a surface of the main pole as a current passes through the heavy metal layer in a cross-track direction. The SOT executes a torque on the surface magnetization of the main pole, which reduces the magnetic flux shunting from the main pole to the trailing shield. With the reduced magnetic flux shunting from the main pole to the trailing shield, write-ability is improved.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Applicant: Western Digital Technologies, Inc.
    Inventors: Suping SONG, Zhanjie LI, Michael Kuok San HO, Quang LE, Alexander M. ZELTSER
  • Patent number: 11100946
    Abstract: The present disclosure generally relates to spin-orbital torque (SOT) differential reader designs. The SOT differential reader is a multi-terminal device that comprises a first shield, a first spin hall effect layer, a first free layer, a gap layer, a second spin hall effect layer, a second free layer, and a second shield. The gap layer is disposed between the first spin hall effect layer and the second spin hall effect layer. Electrical lead connections are located about the first spin hall effect layer, the second spin hall effect layer, the gap layer, the first shield, and/or the second shield. The electrical lead connections facilitate the flow of current and/or voltage from a negative lead to a positive lead. The positioning of the electrical lead connections and the positioning of the SOT differential layers improves reader resolution without decreasing the shield-to-shield spacing (i.e., read-gap).
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: August 24, 2021
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Xiaoyong Liu, Zhigang Bai, Zhanjie Li, Kuok San Ho, Hisashi Takano
  • Patent number: 11049512
    Abstract: The present disclosure generally relates to data storage devices, and more specifically, to a magnetic media drive employing a magnetic recording head. The head includes a main pole at a media facing surface (MFS), a trailing shield at the MFS, and a heavy metal layer disposed between the main pole and the trailing shield at the MFS. Spin-orbit torque (SOT) is generated from the heavy metal layer and transferred to a surface of the main pole as a current passes through the heavy metal layer in a cross-track direction. The SOT executes a torque on the surface magnetization of the main pole, which reduces the magnetic flux shunting from the main pole to the trailing shield. With the reduced magnetic flux shunting from the main pole to the trailing shield, write-ability is improved.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: June 29, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Suping Song, Zhanjie Li, Michael Kuok San Ho, Quang Le, Alexander M. Zeltser
  • Publication number: 20210158839
    Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a first write head, a second write head, at least one read head, and a thermal fly height control element. The first write head is a wide writing write head comprising a first main pole and a first trailing shield. The second write head a narrow writing write head comprising a second main pole, a trailing gap, a second trailing shield, and one or more side shields. The first main pole has a shorter height and a greater width than the second main pole. The second main pole has a curved or U-shaped surface disposed adjacent to the trailing gap. The thermal fly height control element and the at least one read head are aligned with a center axis of the second main pole of the second write head.
    Type: Application
    Filed: August 24, 2020
    Publication date: May 27, 2021
    Inventors: Thao A. NGUYEN, Michael Kuok San HO, Zhigang BAI, Zhanjie LI, Quang LE
  • Patent number: 10997991
    Abstract: A magnetic recording head includes a trailing shield, a main pole, and a spin Hall layer. The spin Hall layer is disposed between the trailing shield and the main pole. A first spin torque layer is disposed between the spin Hall layer and the trailing shield. A second spin torque layer is disposed between the spin Hall layer and the main pole.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: May 4, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Suping Song, Zhanjie Li, Terence Lam, Lijie Guan
  • Publication number: 20210082458
    Abstract: A magnetic recording head includes a trailing shield and a main pole. A trailing shield gap is between the trailing shield and the main pole. A spin orbital torque structure is within the trailing shield gap. The spin orbital torque structure includes a spin torque layer having a first side and a second side at a media facing surface. A first spin Hall layer is along the first side of the spin torque layer. A second spin Hall layer is along the second side of the spin torque layer. The first spin Hall layer comprises a heavy metal material having a positive spin Hall angle. The second spin Hall layer comprises a heavy metal material having a negative spin Hall angle.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Zhanjie LI, Suping SONG, Lijie GUAN