Patents by Inventor Zhenxing Bi

Zhenxing Bi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11024547
    Abstract: A method for manufacturing a semiconductor device includes forming a fin on a substrate, removing one or more portions of the fin prior to forming a gate structure on the fin, forming the gate structure on the fin, and simultaneously removing one or more additional portions of the fin and one or more portions of the gate structure aligned with the one or more additional portions of the fin to create a fin edge portion aligned with a gate structure edge portion.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 1, 2021
    Assignee: International Business Machines Corporation
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Publication number: 20210151558
    Abstract: Semiconductor devices and methods of forming the same include forming slanted dielectric structures from a first dielectric material on a substrate, with gaps between adjacent slanted dielectric structures. A first semiconductor layer is grown from the substrate, using a first semiconductor material, including a lower portion that fills the gaps and an upper portion above the first dielectric material. The lower portion of the first semiconductor layer is replaced with additional dielectric material.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Zhenxing Bi, Kangguo Cheng, Yi Song, Lijuan Zou
  • Patent number: 11011432
    Abstract: A method of forming vertical fin field effect transistors, including, forming a silicon-germanium cap layer on a substrate, forming at least four vertical fins and silicon-germanium caps from the silicon-germanium cap layer and the substrate, where at least two of the at least four vertical fins is in a first subset and at least two of the at least four vertical fins is in a second subset, forming a silicon-germanium doping layer on the plurality of vertical fins and silicon-germanium caps, removing the silicon-germanium doping layer from the at least two of the at least four vertical fins in the second subset, and removing the silicon-germanium cap from at least one of the at least two vertical fins in the first subset, and at least one of the at least two vertical fins in the second subset.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Patent number: 11011622
    Abstract: A method of forming a semiconductor device and resulting structures having closely packed vertical transistors with reduced contact resistance by forming a semiconductor structure on a doped region of a substrate, the semiconductor structure including a gate formed over a channel region of a semiconductor fin. A liner is formed on the gate and the semiconductor fin, and a dielectric layer is formed on the liner. Portions of the liner are removed to expose a top surface and sidewalls of the semiconductor fin and a sidewall of the dielectric layer. A recessed opening is formed by recessing portions of the liner from the exposed sidewall of the dielectric layer. A top epitaxy region is formed on the exposed portions of the semiconductor fin and dielectric layer such that an extension of the top epitaxy region fills the recessed opening. The top epitaxy region is confined between portions of the liner.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 18, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Patent number: 11004751
    Abstract: A semiconductor device includes a substrate with a first semiconductor fin and a second semiconductor fin formed thereon. A pair of opposing dielectric trench spacers are between the first and second semiconductor fins. The opposing dielectric trench spacers define an isolation region therebetween. The semiconductor device further includes a shallow trench isolation (STI) element formed in the isolation region. The STI element includes a lower portion on the substrate and an upper portion located opposite the lower portion. The upper portion extends above an upper end of the dielectric trench spacers.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 11, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Dexin Kong, Zhenxing Bi
  • Patent number: 10998229
    Abstract: Systems, methods, and devices facilitating a transistor with an improved self-aligned contact are provided. In one example, a method comprises depositing a dielectric layer onto a first gate region and a second gate region of a semiconductor device, wherein the first gate region and the second gate region are separated by a substrate contact region, and wherein the dielectric layer has a first etch sensitivity to an inter-layer dielectric; and depositing a sacrificial layer onto the dielectric layer, wherein the sacrificial layer has a second etch sensitivity to the inter-layer dielectric that is greater than the first etch sensitivity.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 4, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Zhenxing Bi, Juntao Li, Dexin Kong
  • Patent number: 10985279
    Abstract: Semiconductor devices and methods for forming the semiconductor devices include forming a sacrificial layer on a substrate on each side of a stack of nanosheets, the stack of nanosheets including first nanosheets and second nanosheets stacked in alternating fashion with a dummy gate structure formed thereon. Source and drain regions are grown on from the sacrificial layer and from ends of the second nanosheets to form source and drain regions in contact with each side of the stack of nanosheets. The sacrificial layer is removed. An interlevel dielectric is deposited around the source and drain regions to fill between the source and drain regions and the substrate.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: April 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Juntao Li, Peng Xu, Zhenxing Bi
  • Patent number: 10985236
    Abstract: A method of forming an integrated circuit device having a nanosheet resistor includes forming a nanosheet structure having alternating sheets of silicon and silicon germanium. An ion implantation is performed on the nanosheet structure. A thermal anneal is performed on the nanosheet structure. A dielectric oxide is placed around the nanosheet structure. A first contact and a second contact are coupled to the nanosheet structure to form a resistor between the first contact and the second contact. Other embodiments are also described herein.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: April 20, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Wei Wang, Zheng Xu
  • Publication number: 20210110727
    Abstract: A computer-implemented method, a computer program product, and an incremental learning system are provided for language learning and speech enhancement. The method includes transforming acoustic utterances uttered by an individual into textual representations thereof, by a voice-to-language processor configured to perform speech recognition. The method further includes accelerating speech development in the individual, by an incremental learning system that includes the voice-to-language processor and that processes the acoustic utterances using natural language processing and analytics to determine and incrementally provide new material to the individual for learning. Responsive to the individual being a baby, the voice-to-language processor discretizes baby babbling to consonants, letters, and words.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Mahmoud Amin, Zhenxing Bi, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Christopher J. Penny, Krishna R. Tunga, Loma Vaishnav
  • Patent number: 10978576
    Abstract: Techniques for VFET gate length control are provided. In one aspect, a method of forming a VFET device includes: patterning fins in a substrate; forming first polymer spacers alongside opposite sidewalls of the fins; forming second polymer spacers offset from the fins by the first polymer spacers; removing the first polymer spacers selective to the second polymer spacers; reflowing the second polymer spacers to close a gap to the fins; forming a cladding layer above the second polymer spacers; removing the second polymer spacers; forming gates along opposite sidewalls of the fins exposed in between the bottom spacers and the cladding layer, wherein the gates have a gate length Lg set by removal of the second polymer spacers; forming top spacers above the cladding layer; and forming top source and drains above the top spacers. A VFET device is also provided.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 13, 2021
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Chi-Chun Liu, Chun Wing Yeung, Robin Hsin Kuo Chao, Zhenxing Bi, Kristin Schmidt, Yann Mignot
  • Patent number: 10957599
    Abstract: Embodiments of the present invention are directed to techniques for integrating an extra gate (EG) vertical field effect transistor (VFET) with a single gate (SG) VFET. In a non-limiting embodiment of the invention, a bottom source or drain (S/D) layer is formed over a substrate. A first semiconductor fin is formed over the bottom S/D layer in a first region of the substrate and a second semiconductor fin is formed over the bottom S/D layer in a second region of the substrate. A block mask is formed over the first semiconductor fin and the second semiconductor fin is recessed. The second semiconductor fin is exposed to an isotropic or anisotropic fin trim.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Junli Wang, Peng Xu
  • Patent number: 10957601
    Abstract: Semiconductor devices and methods of forming the same include etching a stack of alternating channel and sacrificial layers to form a fin. The etch depth is controlled by a signal layer embedded in a substrate under the stack. Source and drain regions are formed on ends of the channel layers. The sacrificial layers are etched away and a gate stack is formed over and between the channel layers.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: March 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Zhenxing Bi, Kangguo Cheng, Wenyu Xu, Xin Miao
  • Patent number: 10937860
    Abstract: Semiconductor devices and methods of forming the same include forming slanted dielectric structures from a first dielectric material on a substrate, with gaps between adjacent slanted dielectric structures. A first semiconductor layer is grown from the substrate, using a first semiconductor material, including a lower portion that fills the gaps and an upper portion above the first dielectric material. The lower portion of the first semiconductor layer is replaced with additional dielectric material.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Yi Song, Lijuan Zou
  • Patent number: 10937703
    Abstract: An integrated semiconductor device having a substrate with a first substrate region and a second substrate region. The integrated semiconductor device further includes a first field-effect transistor disposed on the substrate in the first substrate region. The first field-effect transistor has a plurality of first fins having a first semiconductor material. In addition, the integrated semiconductor device includes a second field-effect transistor disposed on the substrate in the second substrate region. The second field-effect transistor has a plurality of second fins having a second semiconductor material that differs from the first semiconductor material.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Juntao Li, Peng Xu
  • Patent number: 10937792
    Abstract: A configuration of components formed on a semiconductor structure is provided. A non-limiting example of the configuration includes a substrate having a first section doped with a first dopant and a second section doped with a second dopant. The configuration further includes an insulator interposed between the first and second sections. A first fin extends upwardly from the first section, and second and third fins extend upwardly from the second section. A conductor is configured to be shared between proximal gates operably interposed between the first and second fins. A dielectric material is configured to separate proximal gates operably interposed between the second and third fins.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: March 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Xu, Kangguo Cheng, Zhenxing Bi, Juntao Li
  • Patent number: 10930756
    Abstract: Embodiments of the invention are directed to method of fabricating a semiconductor device. A non-limiting embodiment of the method includes performing fabrication operations to form a nanosheet field effect transistor (FET) device on a substrate, wherein the fabrication operations include forming gate spacers along a gate region of the nanosheet FET device, wherein each of the gate spacers comprises an upper segment and a lower segment.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: February 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Kangguo Cheng, Nicolas J. Loubet, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10930734
    Abstract: A technique relates to a semiconductor device. A rare earth material is formed on a substrate. An isolation layer is formed at an interface of the rare earth material and the substrate. Channel layers are formed over the isolation layer. Source or drain (S/D) regions are formed on the isolation layer.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: February 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Zhenxing Bi, Kangguo Cheng, Zheng Xu
  • Patent number: 10916154
    Abstract: A computer-implemented method, a computer program product, and an incremental learning system are provided for language learning and speech enhancement. The method includes transforming acoustic utterances uttered by an individual into textual representations thereof, by a voice-to-language processor configured to perform speech recognition. The method further includes accelerating speech development in the individual, by an incremental learning system that includes the voice-to-language processor and that processes the acoustic utterances using natural language processing and analytics to determine and incrementally provide new material to the individual for learning.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: February 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mahmoud Amin, Zhenxing Bi, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Christopher J. Penny, Krishna R. Tunga, Loma Vaishnav
  • Publication number: 20210028175
    Abstract: A method of performing co-integrated fabrication of a non-volatile memory (NVM) and a gate-all-around (GAA) nanosheet field effect transistor (FET) includes recessing fins in a channel region of the NVM and the FET to form source and drain regions adjacent to recessed fins, and removing alternating portions of the recessed fins of the NVM and the FET to form gaps in the recessed fins. A stack of layers that make up an NVM structure are conformally deposited within the gaps of the recessed fins leaving second gaps, smaller than the gaps, and above the recessed fins of the NVM while protecting the FET with the organic planarization layer (OPL) and a block mask. The OPL and block mask are removed from the FET, and another OPL and another block mask protect the NVM while a gate of the FET is formed above the recessed fins and within the gaps.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 28, 2021
    Inventors: Zhenxing Bi, Zheng Xu, Dexin Kong, Kangguo Cheng
  • Patent number: 10896816
    Abstract: A method for forming a nanosheet semiconductor device includes forming a nanosheet stack comprising channel nanosheets. The method includes depositing silicon on the nanosheet stack, the silicon completely filling a space between adjacent channel nanosheets. The method includes etching the silicon. The method includes exposing the nanosheet stack to a gas phase heat treatment.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: January 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhenxing Bi, Thamarai S. Devarajan, Nicolas J. Loubet, Binglin Miao, Muthumanickam Sankarapandian, Charan V. Surisetty, Chun W. Yeung, Jingyun Zhang