Patents by Inventor Zhijiong Luo

Zhijiong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8952453
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 10, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8928089
    Abstract: A semiconductor structure and a method for forming the same are provided. The structure comprises a semiconductor substrate (100) with an nMOSFET region (102) and a pMOSFET region (104) on it. An nMOSFET structure and a pMOSFET structure are formed in the nMOSFET region (102) and the pMOSFET region (104), respectively. The nMOSFET structure comprises a first channel region (182) formed in the nMOSFET region (102) and a first gate stack formed in the first channel region (182). The nMOSFET structure is covered with a compressive-stressed material layer (130) to apply a tensile stress to the first channel region (182). The pMOSFET structure comprises a second channel region (184) formed in the pMOSFET region (104) and a second gate stack formed in the second channel region (184). The pMOSFET structure is covered with a tensile-stressed material layer (140) to apply a compressive stress to the second channel region (184).
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 6, 2015
    Assignee: Institute of Microelectronics Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8912567
    Abstract: The present invention relates to semiconductor integrated circuits. More particularly, but not exclusively, the invention relates to strained channel complimentary metal oxide semiconductor (CMOS) transistor structures and fabrication methods thereof. A strained channel CMOS transistor structure comprises a source stressor region comprising a source extension stressor region; and a drain stressor region comprising a drain extension stressor region; wherein a strained channel region is formed between the source extension stressor region and the drain extension stressor region, a width of said channel region being defined by adjacent ends of said extension stressor regions.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: December 16, 2014
    Assignees: GLOBALFOUNDRIES Singapore Pte. Ltd., International Business Machines Corporation
    Inventors: Yung Fu Chong, Zhijiong Luo, Judson Holt
  • Publication number: 20140362652
    Abstract: A semiconductor memory device and a method for accessing the same are disclosed. The semiconductor memory device comprises a memory transistor, a first control transistor and a second control transistor, wherein a source electrode and a gate electrode of the first control transistor are coupled to a first bit line and a first word line respectively, a drain electrode and a gate electrode of the second control transistor are coupled to a second word line and a second bit line respectively, a gate electrode of the memory transistor is coupled to a drain electrode of the first control transistor, a drain electrode of the memory transistor is coupled to a source electrode of the second control transistor, and a source electrode of the memory transistor is coupled to ground, and wherein the memory transistor exhibits a gate electrode-controlled memory characteristic. The semiconductor memory device increases integration level and decreases refresh frequency.
    Type: Application
    Filed: March 22, 2012
    Publication date: December 11, 2014
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Zhengyong Zhu, Haizhou Yin, Huilong Zhu
  • Patent number: 8906753
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing an SOI substrate, forming a gate structure on the SOI substrate; etching an SOI layer of the SOI substrate and a BOX layer of the SOI substrate on both sides of the gate structure to form trenches, the trenches exposing the BOX layer and extending partly into the BOX layer; forming sidewall spacers on sidewalls of the trenches; forming inside the trenches a metal layer covering the sidewall spacers, wherein the metal layer is in contact with the SOI layer which is under the gate structure. Accordingly, the present invention further provides a semiconductor structure formed according to aforesaid method.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: December 9, 2014
    Assignee: The Institute of Microelectronics Chinese Academy of Science
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8889554
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising: forming a first contact layer on an exposed active region of a first spacer; forming a second spacer at a region of the first contact layer close to a gate stack to partially cover the exposed active region; forming a second contact layer in the uncovered exposed active region, wherein when a diffusion coefficient of the first contact layer is the same as that of the second contact layer, the first contact layer has a thickness less than that of the second contact layer; and when the diffusion coefficient of the first contact layer is different from that of the second contact layer, the diffusion coefficient of the first contact layer is smaller than that of the second contact layer. Correspondingly, the present invention also provides a semiconductor structure.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: November 18, 2014
    Assignee: The Institue of Microelectronics Chinese Academy of Science
    Inventors: Haizhou Yin, Wei Jiang, Zhijiong Luo, Huilong Zhu
  • Publication number: 20140332891
    Abstract: The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes an SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Qingqing LIANG, Zhijiong LUO, Haizhou YIN, Huilong ZHU
  • Patent number: 8878280
    Abstract: The present invention provides a FinFET flash memory device and the method for manufacturing the same. The flash memory device is on an insulating layer, comprising: a first fin and a second fin, wherein the second fin is a control gate of the device; a gate dielectric layer, at side walls and top of the first fin and the second fin; source/drain regions, inside the first fin at both sides of a floating gate.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 4, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 8841777
    Abstract: Vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with vertical stacks of a metal portion and a semiconductor portion formed on a second substrate. Alternately, vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with metal portions formed on a second substrate. The assembly of the first and second substrates is subjected to an anneal at a temperature that induces formation of a metal semiconductor alloy derived from the semiconductor portions and the metal portions. The first substrate and the second substrate are bonded through metal semiconductor alloy portions that adhere to the first and second substrates.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Zhengwen Li, Zhijiong Luo, Huilong Zhu
  • Patent number: 8835316
    Abstract: The disclosure provides a transistor, a method for manufacturing the transistor, and a semiconductor chip comprising the transistor. The transistor comprises: an active area, a gate stack, a primary spacer, and source/drain regions, wherein the active area is on a semiconductor substrate; the gate stack, the primary spacer, and the source/drain regions are on the active area; the primary spacer surrounds the gate stack; the source/drain regions are embedded in the active area and self-aligned with opposite sides of the primary spacer. Wherein the transistor further comprises: a silicide spacer, wherein the silicide spacer is located at opposite sides of the primary spacer, and a dielectric material is filled between the two ends of the silicide spacer in the width direction of the gate stack, so as to isolate the source/drain regions from each other.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: September 16, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Jun Luo, Huilong Zhu, Zhijiong Luo
  • Patent number: 8829576
    Abstract: The present invention provides a semiconductor structure comprising a substrate, a gate stack, a sidewall, a base region, source/drain regions, and a support structure, wherein: the base region is located above the substrate, and is separated from the substrate by the void; said support structure is located on both sides of the void, in which part of the support isolation structure is connected with the substrate; the gate stack is located above the base region, said sidewall surrounding the gate stack; said source/drain regions are located on both sides of the gate stack, the base region and the support isolation structure, in which the stress in the source/drain regions first gradually increases and then gradually decreases along the height direction from the bottom. The present invention also provides a manufacturing method for the semiconductor structure. The present invention is beneficial to suppress the short channel effect, as well as to provide an optimum stress to the channel.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 8829621
    Abstract: The present invention relates to a semiconductor substrate, an integrated circuit having the semiconductor substrate, and methods of manufacturing the same.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 9, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin, Huicai Zhong
  • Patent number: 8828840
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. The method comprises: forming at least one trench in a first semiconductor layer, wherein at least lower portions of respective sidewalls of the trench tilt toward outside of the trench; filling a dielectric material in the trench, thinning the first semiconductor layer so that the first semiconductor layer is recessed with respect to the dielectric material, and epitaxially growing a second semiconductor layer on the first semiconductor layer, wherein the first semiconductor layer and the semiconductor layer comprise different materials from each other. According to embodiments of the disclosure, defects occurring during the heteroepitaxial growth can be effectively suppressed.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 9, 2014
    Assignee: Chinese Academy of Sciences, Institute of Microelectronics
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Patent number: 8822334
    Abstract: A method for manufacturing a semiconductor structure comprises: providing a substrate (100) on which a dummy gate stack is formed, forming a spacer (240) at sidewalls of the dummy gate stack, and forming a source/drain region (110) and a source/drain extension region (111) at both sides of the dummy gate stack; removing at least part of the spacer (240), to expose at least part of the source/drain extension region (111); forming a contact layer (112) on the source/drain region (110) and the exposed source/drain extension region (111), the contact layer (112) being [made of] one of CoSi2, NiSi and Ni(Pt)Si2-y or combinations thereof, and a thickness of the contact layer (112) being less than 10 nm. Correspondingly, the present invention further provides a semiconductor structure which is beneficial to reducing contact resistance and can maintain excellent performance in a subsequent high temperature process.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 2, 2014
    Assignee: The Institute of Microelectronics, Chinese Academy of Science
    Inventors: Haizhou Yin, Jun Luo, Zhijiong Luo, Huilong Zhu
  • Publication number: 20140238461
    Abstract: The present invention provides a solar cell unit, which comprises a semiconductor plate of first-type doping or second-type doping; wherein the semiconductor plate has a first surface and a second surface opposite to the first surface; the semiconductor plate comprises a first-type doping region and second-type doping region, both the first-type doping region and the second-type doping region are located on the first surface of the semiconductor plate; a first sheet is provided on the side surface of the semiconductor plate that is adjacent to the first-type doping region, and a second sheet is provided on the side surface of the semiconductor plate that is adjacent to the second type doping region.
    Type: Application
    Filed: July 25, 2013
    Publication date: August 28, 2014
    Inventors: Zhijiong LUO, Huilong ZHU, Haizhou Yin
  • Publication number: 20140239458
    Abstract: A first bonding material layer is formed on a first substrate and a second bonding material layer is formed on a second substrate. The first and second bonding material layers include a metal. Ions are implanted into the first and second bonding material layers to induce structural damages in the in the first and second bonding material layers. The first and second substrates are bonded by forming a physical contact between the first and second bonding material layers. The structural damages in the first and second bonding material layers enhance diffusion of materials across the interface between the first and second bonding material layers to form a bonded material layer in which metal grains are present across the bonding interface, thereby providing a high adhesion strength across the first and second substrates.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Zhengwen Li, Zhijiong Luo, Huilong Zhu
  • Patent number: 8815660
    Abstract: The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes a SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Qingqing Liang, Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8815698
    Abstract: A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to fill the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to fill the grooves.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 26, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20140225200
    Abstract: The present invention relates to enhancing MOSFET performance with the corner stresses of STI.
    Type: Application
    Filed: March 29, 2012
    Publication date: August 14, 2014
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8803208
    Abstract: The invention provides a semiconductor device comprising: a substrate; a gate, which is formed on the substrate; a source and a drain, which are located on opposite sides of the gate, respectively; a contact, which contacts with the source and/or the drain, wherein the contact has an enlarged end at an end which is in contact with the source and/or the drain. In the present invention, since the contact area of the contact is increased on the interface in contact with the source/the drain, the contact resistance can be reduced, and thus the performances of the semiconductor device can be guaranteed/improved. The present invention further provides a method of fabricating the semiconductor device (especially the contact therein) as previously described.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 12, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo