Patents by Inventor Zhijiong Luo

Zhijiong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8669160
    Abstract: A method for manufacturing a semiconductor device is provided. The method comprises providing a semiconductor substrate; forming a dummy gate structure and a spacer surrounding the dummy gate structure on the semiconductor substrate; forming source/drain regions on both sides of the gate structure within the semiconductor substrate using the dummy gate structure and the spacer as a mask; forming an interlayer dielectric layer on the upper surface of the semiconductor substrate, the upper surface of the interlayer dielectric layer being flush with the upper surface of the dummy gate structure; removing at least a part of the dummy gate structure so as to form a trench surrounded by the spacer; performing tilt angle ion implantation into the semiconductor substrate using the interlayer dielectric layer and spacer as a mask so as to form an asymmetric Halo implantation region; sequentially forming a gate dielectric layer and a metal gate in the trench.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: March 11, 2014
    Assignee: The Institute of Microelectronics, Chinese Academy of Science
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu, Da Yang
  • Patent number: 8669155
    Abstract: A hybrid channel semiconductor device and a method for forming the same are provided.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 11, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8664091
    Abstract: A method for removing a metallic nanotube, which is formed on a substrate in a first direction, includes forming a plurality of conductors in a second direction crossing the first direction, electrically contacting the plurality of conductors with metallic nanotube, respectively, forming at least two voltage-applying electrodes on the conductors, each of which electrically contacting at least one of the conductors, and applying voltages to at least some of the conductors through the voltage-applying electrodes, respectively. Among the conductors to which the voltages are respectively applied, every two adjacent conductors have an electrical potential difference created therebetween, so as to burn out the metallic nanotube.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8664054
    Abstract: The invention relates to a method for forming a semiconductor structure, comprising: providing a semiconductor substrate which comprises a dummy gate formed thereon, a spacer surrounding the dummy gate, source and drain regions formed on two sides of the dummy gate, respectively, and a channel region formed in the semiconductor substrate and below the dummy gate; removing the dummy gate to form a gate opening; forming a stressed material layer in the gate opening; performing an annealing to the semiconductor substrate, the stressed material layer having tensile stress characteristics during the annealing; removing the stressed material layer in the gate opening; and forming a gate in the gate opening. By the above steps, the stress memorization technique can be applied to the pMOSFET.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 4, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 8658485
    Abstract: There is provided a semiconductor device and a method of fabricating the same. The method of fabricating a semiconductor device according to the present invention comprises: forming a transistor structure including a gate, and source and drain regions on a semiconductor substrate; carrying out a first silicidation to form a first metal silicide layer on the source and drain regions; depositing a first dielectric layer on the substrate, the top of the first dielectric layer being flush with the top of the gate region; forming contact holes at the portions corresponding to the source and drain regions in the first dielectric layer; and carrying out a second silicidation to form a second metal silicide at the gate region and in the contact holes, wherein the first metal silicide layer is formed to prevent silicidation from occurring at the source and drain regions during the second silicidation.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 25, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Patent number: 8658507
    Abstract: There is provided a MOSFET structure and a method of fabricating the same. The method includes: providing a semiconductor substrate; forming a dummy gate on the semiconductor substrate; forming source/drain regions; selectively etching the dummy gate to a position where a channel is to be formed; and epitaxially growing a channel layer at the position where the channel is to be formed and forming a gate on the channel layer, wherein the channel layer comprises a material of high mobility. Thereby, the channel of the device is replaced with the material of high mobility after the source/drain region is formed, and thus it is possible to suppress the short channel effect and also to improve the device performance.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: February 25, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo, Qingqing Liang
  • Patent number: 8642471
    Abstract: The present invention provides a method for manufacturing a semiconductor structure. The method can effectively reduce the contact resistance between source/drain regions and a contact layer by forming two contact layers of different thickness on the surfaces of the source/drain regions. Further, the present invention provides a semiconductor structure, which has reduced the contact resistance.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: February 4, 2014
    Assignee: The institute of Microelectronics, Chinese Academy of Science
    Inventors: Haizhou Yin, Jun Luo, Huilong Zhu, Zhijiong Luo
  • Patent number: 8643119
    Abstract: A structure for a semiconductor device, according to an embodiment, includes: a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: February 4, 2014
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing LTD
    Inventors: Zhijiong Luo, Huilong Zhu, Yung Fu Chong, Hung Y. Ng, Kern Rim, Nivo Rovedo
  • Patent number: 8643061
    Abstract: A semiconductor structure is provided. The structure includes an n-type field-effect-transistor (NFET) being formed directly on top of a strained silicon layer, and a p-type field-effect-transistor (PFET) being formed on top of the same stained silicon layer but via a layer of silicon-germanium (SiGe). The strained silicon layer may be formed on top of a layer of insulating material or a silicon-germanium layer with graded Ge content variation. Furthermore, the NFET and PFET are formed next to each other and are separated by a shallow trench isolation (STI) formed inside the strained silicon layer. Methods of forming the semiconductor structure are also provided.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Haizhou Yin, Dae-Gyu Park, Oleg Gluschenkov, Zhijiong Luo, Dominic Schepis, Jun Yuan
  • Patent number: 8633522
    Abstract: A semiconductor structure and a method for fabricating the same. A semiconductor structure includes a semiconductor substrate; a channel region formed in the semiconductor substrate; a gate including a dielectric layer and a conductive layer and formed above the channel region; source and drain regions formed at opposing sides of the gate; first shallow trench isolations embedded into the semiconductor substrate and having a length direction parallel to the length direction of the gate; and second shallow trench isolations, each of which abuts the outer sidewall of the source or the drain region and abuts the first shallow trench isolations, in which the source and drain regions include first seed crystal layers abutting the second shallow trench isolations, and the top surfaces of the second shallow trench isolations are higher than or as high as the top surfaces of the source and drain regions.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: January 21, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo, Huicai Zhong
  • Publication number: 20140004672
    Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a channel region under the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the channel region, wherein at least one of the source and drain regions comprises a set of dislocations that are adjacent to the channel region and arranged in the direction perpendicular to a top surface of the semiconductor substrate, and the set of dislocations comprises at least two dislocations.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 2, 2014
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130334569
    Abstract: A semiconductor structure comprises a substrate, a gate stack, a base area, and a source/drain region, wherein the gate stack is located on the base area, the source/drain region is located in the base area, and the base area is located on the substrate. A supporting isolated structure is provided between the base area and the substrate, wherein part of the supporting structure is connected to the substrate; a cavity is provided between the base area and the substrate, wherein the cavity is composed of the base area, the substrate and the supporting isolated structure. A stressed material layer is provided on both sides of the gate stack, the base area and the supporting isolated structure. Correspondingly, a method is provided for manufacturing such a semiconductor structure, which inhibits the short channel effect, reduces the parasitic capacitance and leakage current, and enhances the steepness of the source/drain region.
    Type: Application
    Filed: March 23, 2012
    Publication date: December 19, 2013
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8610275
    Abstract: The present invention discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate, a local interconnect structure connected to the semiconductor substrate, and at least one via stack structure electrically connected to the local interconnect structure, wherein the at least one via stack structure comprises a via having an upper via and a lower via, the width of the upper via being greater than that of the lower via; a via spacer formed closely adjacent to the inner walls of the lower via; an insulation layer covering the surfaces of the via and the via spacer; a conductive plug formed within the space surrounded by the insulation layer, and electrically connected to the local interconnect structure. The present invention is applicable to manufacture of a via stack in the filed of manufacturing semiconductor.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 17, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 8598595
    Abstract: The present application discloses a semiconductor device and a method for manufacturing the same.
    Type: Grant
    Filed: September 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8598666
    Abstract: The present invention relates to a semiconductor structure and a method for manufacturing the same.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 3, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 8598662
    Abstract: A semiconductor device comprises: a semiconductor substrate located on an insulating layer; and an insulator located on the insulating layer and embedded in the semiconductor substrate, wherein the insulator applies stress therein to the semiconductor substrate. A method for forming a semiconductor device comprises: forming a semiconductor substrate on an insulating layer; forming a cavity within the semiconductor substrate so as to expose the insulating layer; forming an insulator in the cavity, wherein the insulator applies stress therein to the semiconductor substrate. It facilitates the reduction of the short channel effect, the resistance of source/drain regions and parasitic capacitance.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: December 3, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20130309831
    Abstract: A method of manufacturing a semiconductor device, which comprises: providing a semiconductor substrate; forming a dummy gate structure and a spacer surrounding the dummy gate structure on the semiconductor substrate; forming source/drain regions on both sides of the gate structure within the semiconductor substrate using the dummy gate structure and the spacer as a mask; forming an interlayer dielectric layer on the upper surface of the semiconductor substrate, the upper surface of the interlayer dielectric layer being flush with the upper surface of the dummy gate structure; removing at least a part of the dummy gate structure so as to form a trench surrounded by the spacer; performing tilt angle ion implantation into the semiconductor substrate using the interlayer dielectric layer and spacer as a mask so as to form an asymmetric Halo implantation region; sequentially forming a gate dielectric layer and a metal gate in the trench.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu, Da Yang
  • Patent number: 8587066
    Abstract: A device and method is provided that in one embodiment provides a first semiconductor device including a first gate structure on a first channel region, in which a first source region and a first drain region are present on opposing sides of the first channel region, in which a metal nitride spacer is present on only one side of the first channel region. The device further includes a second semiconductor device including a second gate structure on a second channel region, in which a second source region and a second drain region are present on opposing sides of the second channel region. Interconnects may be present providing electrical communication between the first semiconductor device and the second semiconductor device, in which at least one of the first semiconductor device and the second semiconductor device is inverted. A structure having a reverse halo dopant profile is also provided.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Zhijiong Luo, Qingqing Liang, Haizhou Yin
  • Publication number: 20130299885
    Abstract: A FinFET and a method for manufacturing the same are disclosed. The FinFET comprises an etching stop layer on a semiconductor substrate; a semiconductor fin on the etching stop layer; a gate conductor extending in a direction perpendicular to a length direction of the semiconductor fin and covering at least two side surfaces of the semiconductor fin; a gate dielectric layer between the gate conductor and the semiconductor fin; a source region and a drain region which are provided at two ends of the semiconductor fin respectively; and an interlayer insulating layer adjoining the etching stop layer below the gate dielectric layer, and separating the gate conductor from the etching stop layer and the semiconductor fin. A height of the fin of the FinFET is approximately equal to a thickness of a semiconductor layer for forming the semiconductor fin.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Inventors: Huilong Zhu, Wei He, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8575654
    Abstract: A method of forming a strained semiconductor channel, comprising: forming a relaxed SiGe layer on a semiconductor substrate; forming a dielectric layer on the relaxed SiGe layer and forming a sacrificial gate on the dielectric layer, wherein the dielectric layer and the sacrificial gate form a sacrificial gate structure; depositing an interlayer dielectric layer, which is planarized to expose the sacrificial gate; etching to remove the sacrificial gate and the dielectric layer to form an opening; forming a semiconductor epitaxial layer by selective semiconductor epitaxial growth in the opening; depositing a high-K dielectric layer and a metal layer; and removing the high-K dielectric layer and metal layer covering the interlayer dielectric layer by planarizing the deposited metal layer and high-K dielectric layer to form a metal gate. A semiconductor device manufactured by this process is also provided.
    Type: Grant
    Filed: September 19, 2010
    Date of Patent: November 5, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo