Patents by Inventor Zhijiong Luo

Zhijiong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8450775
    Abstract: An example embodiment of a strained channel transistor structure comprises the following: a strained channel region comprising a first semiconductor material with a first natural lattice constant; a gate dielectric layer overlying the strained channel region; a gate electrode overlying the gate dielectric layer; and a source region and drain region oppositely adjacent to the strained channel region, one or both of the source region and drain region are comprised of a stressor region comprised of a second semiconductor material with a second natural lattice constant different from the first natural lattice constant; the stressor region has a graded concentration of a dopant impurity and/or of a stress inducing molecule. Another example embodiment is a process to form the graded impurity or stress inducing molecule stressor embedded S/D region, whereby the location/profile of the S/D stressor is not defined by the recess depth/profile.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: May 28, 2013
    Assignees: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Yung Fu Chong, Zhijiong Luo, Judson Robert Holt
  • Patent number: 8450813
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein a bulk semiconductor material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and an insulation material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages of body-tied structures.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 28, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Patent number: 8445973
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Publication number: 20130119484
    Abstract: The present invention provides a method of manufacturing a semiconductor device comprising: providing a semiconductor substrate, on which a high-k dielectric layer and a patterned gate are formed sequentially; nitridating portions of the high-k dielectric layer on the semiconductor substrate which are not covered by the gate; and forming spacers around the gate. Accordingly, the present invention further provides a semiconductor device. Portions of the high-k dielectric layer on the semiconductor substrate, which are not covered by the gate or the spacers positioned thereon, are nitridated, such that an oxygen diffusion barrier layer is formed on the surface of the high-k dielectric layer, thereby oxygen diffusion in the lateral direction into the high-k dielectric layer under the gate is prevented, and the operation performance of the semiconductor device is optimized.
    Type: Application
    Filed: February 27, 2011
    Publication date: May 16, 2013
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20130122690
    Abstract: A method for removing a metallic nanotube which is formed on a substrate in a first direction is disclosed. The method may comprise: forming a plurality of conductors in a second direction crossing the first direction, the conductors electrically contacting the metallic nanotube, respectively; forming at least two voltage-applying electrodes on the conductors, each of the voltage-applying electrodes electrically contacting at least one of the conductors; and applying voltages to at least some of the conductors through the voltage-applying electrodes, respectively, wherein among conductors to which the voltages are respectively applied, every two adjacent conductors have an electrical potential difference created therebetween, so as to burn out the metallic nanotube.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 16, 2013
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8441045
    Abstract: The present application discloses a semiconductor device and a method of manufacturing the same. Wherein, the semiconductor device comprises: a semiconductor substrate; a stressor embedded in the semiconductor substrate; a channel region disposed on the stressor; a gate stack disposed on the channel region; a source/drain region disposed on two sides of the channel region and embedded in the semiconductor substrate; wherein, surfaces of the stressor comprise a top wall, a bottom wall, and side walls, the side walls comprising a first side wall and a second side wall, the first side wall connecting the top wall and the second side wall, the second side wall connecting the first side wall and the bottom wall, the angle between the first side wall and the second side wall being less than 180°, and the first sidewall and the second side wall being roughly symmetrical with respect to a plane parallel to the semiconductor substrate.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: May 14, 2013
    Assignee: The Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8441050
    Abstract: A fin transistor structure and a method of fabricating the same are disclosed. In one aspect the method comprises providing a bulk semiconductor substrate, patterning the semiconductor substrate to form a fin with it body directly tied to the semiconductor substrate, patterning the fin so that gaps are formed on the bottom of the fin at source/drain regions of the transistor structure to be formed. This is performed wherein a portion of the fin corresponding to the channel region of the transistor structure to be formed is directly tied to the semiconductor substrate, while other portions of the fin at the source/drain regions are separated from the surface of the semiconductor substrate by the gaps. Also, filling an insulation material into the gaps, and fabricating the transistor structure based on the semiconductor substrate with the fin formed thereon are disclosed. Thereby, it is possible to reduce the leakage current while maintaining the advantages of body-tied structures.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 14, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Patent number: 8440532
    Abstract: In one embodiment, a method of providing a semiconductor device is provided, in which instead of forming isolation regions before the formation of the semiconductor devices, the isolation regions are formed after the semiconductor devices. In one embodiment, the method includes forming a semiconductor device on a semiconductor substrate. A placeholder dielectric is formed on a portion of a first surface of the substrate adjacent to the semiconductor device. A trench is etched into the substrate from a second surface of the substrate that is opposite the first surface of the substrate, wherein the trench terminates on the placeholder dielectric. The trench is filled with a dielectric material.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Patent number: 8440558
    Abstract: There is provided a semiconductor device and a method of fabricating the same. The method comprises: providing a semiconductor substrate; forming a transistor structure on the semiconductor substrate, wherein the transistor structure comprises a gate region and a source/drain region, and the gate region comprises a gate dielectric layer provided on the semiconductor substrate and a sacrificial gate formed on the gate dielectric layer; depositing a first interlayer dielectric layer, and planarizing the first interlayer dielectric layer to expose the sacrificial gate; removing the sacrificial gate to form a replacement gate hole; forming first contact holes at positions corresponding to the source/drain region in the first interlayer dielectric layer; and filling a first conductive material in the first contact holes and the replacement gate hole respectively to form first contacts and a replacement gate, wherein the first contacts come into contact with the source/drain region.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: May 14, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Scineces
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130115743
    Abstract: A method for forming a semiconductor device is provided, wherein a step of forming an S/D region comprises: determining an interface region comprising an active region of a partial width abutting an isolation region, and forming an auxiliary layer covering the interface region; removing a semiconductor substrate of a partial thickness in the active region using the auxiliary layer, a gate stack structure and the isolation region as a mask, so as to form a groove; and growing a semiconductor material in the groove for filling into the groove. A semiconductor device having a material of the semiconductor substrate sandwiched between an S/D region and an isolation region is further provided. The present invention is beneficial to reduce current leakage.
    Type: Application
    Filed: February 16, 2011
    Publication date: May 9, 2013
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20130099361
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising the steps of: providing a semiconductor substrate, forming an insulating layer on the semiconductor substrate, and forming a semiconductor base layer on the insulating layer; forming a sacrificial layer and a spacer surrounding the sacrificial layer on the semiconductor base layer, and etching the semiconductor base layer by taking the spacer as a mask to form a semiconductor body; forming an insulating film on sidewalls of the semiconductor body; removing the sacrificial layer and the semiconductor body located under the sacrificial layer to form a first semiconductor fin and a second semiconductor fin. Correspondingly, the present invention further provides a semiconductor structure.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 25, 2013
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8426282
    Abstract: The present invention provides a method for forming a semiconductor substrate isolation, comprising: providing a semiconductor substrate; forming a first oxide layer and a nitride layer sequentially on the semiconductor substrate; forming openings in the nitride layer and in the first oxide layer to expose parts of the semiconductor substrate; implanting oxygen ions into the semiconductor substrate from the openings; performing annealing to form a second oxide layer on at least top portions of the exposed parts of the semiconductor substrate; and removing the nitride layer and the first oxide layer. Compared to the conventional STI process, said method enables a more simply and easy process flow and is applicable to common semiconductor substrates and SOI substrates.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Patent number: 8426920
    Abstract: The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20130093002
    Abstract: The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; and a channel region in the semiconductor layer and located between the source region and the drain region, wherein the MOSFET further comprises a back gate which is located in the semiconductor substrate and has a first doped region as a lower portion of the back gate and a second doped region as an upper portion of the back gate, and the second doped region of the back gate is self-aligned with the gate stack. The MOSFET can adjust a threshold voltage by changing doping type and doping concentration of the back gate.
    Type: Application
    Filed: November 18, 2011
    Publication date: April 18, 2013
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20130093020
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate.
    Type: Application
    Filed: November 18, 2011
    Publication date: April 18, 2013
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8420489
    Abstract: A method of manufacturing a semiconductor device, wherein thermal annealing of the source/drain regions is performed before reverse Halo implantation to form a reverse Halo implantation region. The method comprises: removing the dummy gate to expose the gate dielectric layer, so as to form an opening; performing reverse Halo implantation on the substrate via the opening, so as to form a reverse Halo implantation region in the channel of the device; activating the dopants in the reverse Halo implantation region by annealing; and performing subsequent device processing. Deterioration of the gate stack due to the reverse Halo ions implantation may be avoided by the present invention, such that the reverse Halo ions implantation may be applied to the device with a metal gate stack, and the short channel effects may be alleviated and controlled, thereby the performance of the device is enhanced.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 16, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8420490
    Abstract: The present invention relates to a method of manufacturing a semiconductor device, and the method uses the mode of thermal annealing the source/drain regions and performing Halo ion implantation to form a Halo ion-implanted region by: first removing the dummy gate to expose the gate dielectric layer to form an opening; then performing a tilted Halo ion implantation to the device from the opening to form a Halo ion-implanted region on both sides of the channel of the semiconductor device; and then annealing to activate the dopants in the Halo ion-implanted region; finally performing subsequent process to the device according to the requirement of the manufacture process.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 16, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8415621
    Abstract: A method for line width measurement, comprising: providing a substrate, wherein a raised line pattern is formed on a surface of the substrate, and the line pattern has a width; forming a first measurement structure and a second measurement structure on opposite sidewalls of the line pattern in the width direction of the line pattern; removing the line pattern; and measuring the spacing between the first measurement structure and the second measurement structure, and obtaining the width of the line pattern by subtracting a predetermined offset from the spacing. The present invention facilitates to reduce the uncertainty associated with the measuring process and to improve the measurement precision.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: April 9, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130082310
    Abstract: The invention provides a semiconductor structure, comprising a substrate, a semiconductor fin, a gate stack, source/drain regions and a semiconductor body, wherein: the semiconductor fin is located on the semiconductor body, and is connected with the semiconductor body, and both ends of the semiconductor body are connected with the substrate; the gate stack covers the central portion of the semiconductor fin, and extends to the surface of the substrate; and the source/drain regions are located at the end portions of the semiconductor fin; and wherein, cavities are formed in the substrate at both sides of the semiconductor fin, and an insulating material is filled into the cavities. Correspondingly, the invention further provides a method for manufacturing a semiconductor structure.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 4, 2013
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130082354
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, comprising the steps of: providing a semiconductor substrate, forming an insulating layer on the semiconductor substrate, and forming a semiconductor base layer on the insulating layer; forming a sacrificial layer and a spacer surrounding the sacrificial layer on the semiconductor base layer, and etching the semiconductor base layer by taking the spacer as a mask to form a semiconductor body; forming a dielectric film on sidewalls of the semiconductor body; removing the sacrificial layer and the semiconductor body located under the sacrificial layer to form a first semiconductor fin and a second semiconductor fin; and forming a retrograde doped well structure on the inner walls of the first semiconductor fin and the second semiconductor fin, wherein the inner walls thereof are opposite to each other. Correspondingly, the present invention further provides a semiconductor structure.
    Type: Application
    Filed: May 14, 2012
    Publication date: April 4, 2013
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo