Hybrid metal polymer interlock
A mechanical coupling assembly that includes a primary substrate having at least one aperture formed therein. A secondary substrate includes at least one mechanical interlock monolithically formed with the secondary substrate. The at least one mechanical interlock extends through the aperture. The mechanical interlock includes a main body and a head portion with a transition portion connecting the main body and head portions. The main body includes a bore formed longitudinally therein about a centerline of the aperture. The mechanical interlock joins the primary substrate and secondary substrate mechanically.
The invention relates to mechanical coupling assemblies for joining dissimilar materials.
BACKGROUND OF THE INVENTIONGenerally, two dissimilar materials may be joined using a mechanical fastener such as a screw, rivet, bolt, or other known mechanical fastener. Additionally, such dissimilar materials may be joined together using adhesives or bonding agents to attach the two components together. Such adhesives and mechanical fasteners often require complicated and cost intensive assembly operations.
There is therefore a need in the art for an improved mechanical coupling of dissimilar parts that is cost effective and reduces the use of labor intensive manufacturing techniques such as adhesive bonding and mechanical attachments such as screws or rivets. There is also a need in the art for an improved mechanical coupling assembly that allows for weight reduction, performance improvement, as well as improved structural properties when joining two dissimilar components. There is a further need in the art for an improved method and mechanical coupling assembly that utilizes an over-molding or comolding technique joining two dissimilar parts to meet a desired performance and loading characteristic.
SUMMARY OF THE INVENTIONIn one aspect, there is disclosed a mechanical coupling assembly that includes a primary substrate having at least one aperture formed therein. The primary substrate includes a first surface and an opposing second surface separated by a material thickness. A secondary substrate includes at least one mechanical interlock monolithically formed with the secondary substrate. The at least one mechanical interlock extends through the aperture and spans the first and second surfaces. The mechanical interlock includes a main body disposed proximate the first surface and a head portion disposed proximate the second surface with a transition portion connecting the main body and head portions. The main body includes a bore formed longitudinally therein about a centerline of the aperture. The mechanical interlock joins the primary substrate and secondary substrate mechanically.
In another aspect there is disclosed a mechanical coupling assembly that includes a metal primary substrate having at least one aperture formed therein. The primary substrate includes a first surface and an opposing second surface separated by a material thickness. A polymeric secondary substrate includes at least one mechanical interlock monolithically formed with the secondary substrate. The at least one mechanical interlock extends through the aperture and spans the first and second surfaces. The mechanical interlock includes a main body disposed proximate the first surface and a head portion disposed proximate the second surface with a transition portion connecting the main body and head portion. The main body and head portion have a uniform thickness. The mechanical interlock connects the primary substrate and secondary substrate.
In yet a further aspect there is disclosed a method of forming a mechanical coupling assembly that includes the steps of: providing a primary substrate having at least one aperture formed therein, over-molding a secondary substrate onto the primary substrate forming a mechanical interlock, the mechanical interlock including a main body disposed proximate the first surface and a head portion disposed proximate the second surface with a transition portion connecting the main body and head portion, the main body includes a bore formed longitudinally therein about a centerline of the aperture such that the primary and secondary substrates are mechanically joined.
Referring to
In one aspect, the bore 32 formed longitudinally about the centerline of the aperture 14 allows the main body 26 and head portion 28 to include a uniform thickness. The uniform thickness allows for specific design characteristics to be met as well as assures even flow and distribution of the secondary substrate 22 in an over-molding process alleviating potential failure modes of the mechanical interlock 24.
In one aspect, the main body 26 and head portions 28 extend radially about the aperture 14 the same distance. In other words, the shoulder width 34 of the main body 26 and head portion 28 are equal. It should be realized that different shoulder widths may also be utilized. As can be seen in
The primary substrate 12 may be formed of various materials that are dissimilar relative to the secondary substrate 22. In one aspect, the primary substrate 12 may be formed of a metal material such as, for example, aluminum, magnesium, steel, or other metal materials. The secondary substrate 22 may be formed of a polymeric material that is capable of flowing in an over-molding process. In one aspect, the polymeric material may include a fiber reinforced polymeric material, such as glass reinforced nylons, carbon fiber reinforced polymers and plastics and over-moldable reinforced thermo-plastics.
As described above, the main body 26 includes a bore 32 formed longitudinally therein about a centerline of the aperture 14. In one aspect, the bore 32 is sized to define the uniform thickness of the head portion 28 and the main body 26. Additionally, when a fiber reinforced polymeric material is utilized as the secondary substrate 22, the uniform thickness assures alignment of the fibers during the over-molding process, again avoiding potential failure modes of the mechanical interlock 24.
There is also disclosed a method of forming a mechanical coupling assembly 10 that includes the steps of providing a primary substrate 12 having at least one aperture 14 formed therein, over-molding a secondary substrate 22 onto the primary substrate 12 forming a mechanical interlock 24, the mechanical interlock 24 including a main body 26 disposed proximate the first surface 16 and a head portion 28 disposed proximate the second surface 18 with a transition portion 30 connecting the main body 26 and head portion 28. The main body 26 includes a bore 32 formed longitudinally therein about a centerline of the aperture 14. The bore 32 may be defined by a pin in the over molding process. The primary and secondary substrates 12, 22 are mechanically joined by the interlock 24.
The method of forming a mechanical coupling assembly 10 includes specifying parameters of the primary and secondary substrates 12, 22. As shown in
In one aspect, the step of over-molding includes calculating a polar solution for plate deflection with a point load at various positions (center of the interlock) using boundary conditions and solution continuity in accordance (with regions of different stiffness as in equation 1)
After calculating the polar solution, a radial, tangential, and shear stress are evaluated according to Equation 2:
σVonmises=√{square root over ((σr2+σθ2−σrσθ+3τ2))} (EQ 2)
The radial, tangential and shear stress component should be lower than the material yield σY, for each region subject to the constraints:
As shown in
Referring to
Referring to
Referring to
Referring to
The method provides a verifiable process to create mechanical interlocks 24 between dissimilar primary and secondary substrates 12, 22 using an over-molding process. Various over-molding processes such as injection molding and co-molding as well as compression molding may be utilized. The process will allow specific interlocks 24 to be specified for a desired load application.
Claims
1. A mechanical coupling assembly comprising:
- a primary member having at least one aperture formed therein, the primary member including a first surface and opposing second surface separated by a material thickness;
- a secondary member including at least one mechanical interlock monolithically formed with the secondary member, the at least one mechanical interlock extending through the aperture and spanning the first and second surfaces, the mechanical interlock including a main body disposed proximate the first surface and a head portion disposed proximate the second surface and a transition portion connecting the main body and head portion;
- the secondary member having a rib portion in physical contact with the first surface, the main body having a tubular portion extending for a distance from the main body and opposite to the head portion, the rib portion extending away from the tubular portion and along the first surface, and a section of the rib portion proximal to the tubular portion extending for substantially the same distance as the tubular portion and the main body;
- wherein the tubular portion is formed longitudinally about the aperture and terminates before the first surface, and the primary member and secondary member are mechanically joined.
2. The mechanical coupling assembly of claim 1 wherein the tubular portion and head portion includes a uniform thickness.
3. The mechanical coupling assembly of claim 1 wherein the main body and head portion extend about the aperture the same distance.
4. The mechanical coupling assembly of claim 1 wherein the primary member is formed of metal and the secondary member is formed of a polymeric material.
5. The mechanical coupling assembly of claim 4 wherein the polymeric material is a fiber reinforced polymeric material.
6. The mechanical coupling assembly of claim 1 wherein the transition portion includes a radial slot formed therein receiving the primary member.
7. The mechanical coupling assembly of claim 1 wherein the tubular portion is sized to define a uniform thickness of the head portion and the main body.
8. The mechanical coupling assembly of claim 1 wherein the secondary member is over-molded onto the primary member.
9. The mechanical coupling assembly of claim 1 wherein the mechanical interlock includes a portion aligned with the aperture and extending from the transition portion and a terminating end of the tubular portion.
10. The mechanical coupling assembly of claim 1 wherein the rib portion extends to and is connected to another part.
11. The mechanical coupling assembly of claim 10 wherein another part is a second mechanical interlock.
12. The mechanical coupling of claim 1 wherein the section of the rib portion proximal to the tubular portion has a first height and a second section of the rib portion spaced apart from the tubular portion has a second height.
13. The mechanical coupling of claim 12 wherein the first height and the second height are substantially equal to one another.
14. A mechanical coupling assembly comprising:
- a metal primary member having at least one aperture formed therein, the primary member including a first surface and opposing second surface separated by a material thickness;
- a polymeric secondary member including at least one mechanical interlock monolithically formed with the secondary member, the at least one mechanical interlock extending through the aperture and spanning the first and second surfaces, the mechanical interlock including a main body disposed proximate the first surface and a head portion disposed proximate the second surface and a transition portion connecting the main body and head portion;
- wherein the main body includes a tubular portion formed longitudinally about the aperture and terminating before the first surface, and wherein the main body and head portion have a uniform thickness and the main body and the primary member and secondary member are mechanically joined, and wherein the main body and head portion extend about the aperture the same distance.
15. The mechanical coupling assembly of claim 14 wherein the polymeric material is a fiber reinforced polymeric material.
16. The mechanical coupling assembly of claim 14 wherein the transition portion includes a radial slot formed therein receiving the primary member.
17. The mechanical coupling assembly of claim 14 wherein the secondary member is over-molded onto the primary member.
18. The mechanical coupling assembly of claim 14 wherein the mechanical interlock includes a portion aligned with the aperture and extending from the transition portion and a terminating end of the tubular portion.
19. The mechanical coupling assembly of claim 14 wherein the secondary member further comprises a rib portion in physical contact with the first surface.
20. The mechanical coupling assembly of claim 19 wherein a section of the rib portion extends for substantially the same distance from the first surface as the tubular portion and the main body.
21. A mechanical coupling assembly comprising:
- a metal primary member having at least one aperture formed therein, the primary member including a first surface and opposing second surface separated by a material thickness;
- a polymeric secondary member including at least one mechanical interlock monolithically formed with the secondary member, the at least one mechanical interlock extending through the aperture and spanning the first and second surfaces, the mechanical interlock including a main body disposed proximate the first surface, and a head portion disposed proximate the second surface and a transition portion connecting the main body and head portion, the secondary member having a rib portion in physical contact with the first surface, the main body having a tubular portion extending for a distance from the main body and opposite to the head portion, the rib portion extending away from the tubular portion and along the first surface, and a section of the rib portion extending for substantially the same distance from the first surface as the tubular portion and the main body, and
- a portion aligned with the aperture and extending from the transition portion and a terminating end of the tubular portion,
- wherein the main body, the head portion, the tubular portion, and the rib portion have a uniform thickness and the main body and the primary member and secondary member are mechanically joined.
22. The mechanical coupling assembly of claim 21 wherein the transition portion includes a radial slot formed therein receiving the primary member.
23. The mechanical coupling assembly of claim 21 wherein the tubular portion is sized to define a uniform thickness of the head portion and the main body, and wherein the secondary member is over-molded onto the primary member.
24. A mechanical coupling assembly comprising:
- a primary member having at least one aperture formed therein;
- a secondary member including a mechanical interlock and a rib portion in physical contact with the primary member, the mechanical interlock having a head portion, a transition portion extending axially through the aperture, a main body, and a tubular portion extending from the main body in an axial direction away from the main body, the rib portion extending along the primary member radially outwardly from the main body and the tubular portion, and a section of the rib portion extending for an axial height substantially equal to a combined axial height of the main body and the tubular portion.
25. The mechanical coupling assembly of claim 24 wherein the secondary member comprises a fiber reinforced polymeric material over-molded onto the primary member.
26. The mechanical coupling assembly of claim 24 wherein the rib portion extends radially outwardly from the main body and the tubular portion of the mechanical interlock to the main body and the tubular portion of an adjacent mechanical interlock.
27. The mechanical coupling assembly of claim 24 wherein the main body, the head portion, the tubular portion, and the rib portion have a uniform thickness and the primary member and the secondary member are mechanically joined.
28. The mechanical coupling assembly of claim 24 wherein a centerline of the tubular portion is aligned with the aperture.
29. The mechanical coupling assembly of claim 24 wherein the head portion and the main body extend about the aperture the same distance.
2270266 | January 1942 | Cavanagh |
2899347 | August 1959 | Kindseth |
3451853 | June 1969 | Spahrbier |
3544143 | December 1970 | Ohlsson |
3821052 | June 1974 | Tanzer |
5190803 | March 2, 1993 | Goldbach |
5826376 | October 27, 1998 | Yamamoto |
6793261 | September 21, 2004 | McLeod et al. |
7010845 | March 14, 2006 | Muller |
7063811 | June 20, 2006 | Brozenick et al. |
7334828 | February 26, 2008 | Budde |
8250725 | August 28, 2012 | Sigler |
8262155 | September 11, 2012 | Leanza |
20120210558 | August 23, 2012 | Logan |
2905266 | September 2014 | CA |
101479090 | July 2009 | CN |
102007044428 | March 2009 | DE |
102010054195 | June 2012 | DE |
370342 | August 1993 | EP |
0629785 | December 1994 | EP |
1084816 | March 2001 | EP |
1600272 | November 2005 | EP |
Type: Grant
Filed: Oct 30, 2015
Date of Patent: Jul 10, 2018
Patent Publication Number: 20170120509
Assignee: DURA OPERATING, LLC (Auburn Hills, MI)
Inventors: Ali Tavakoli-Targhi (Rochester Hills, MI), Suhant Prajwal Reddy Ranga (Northville, MI)
Primary Examiner: Flemming Saether
Application Number: 14/928,168
International Classification: B29C 65/02 (20060101); B29C 65/00 (20060101); F16B 19/04 (20060101); B29K 101/12 (20060101); B29K 105/12 (20060101); B29L 31/00 (20060101); F16B 5/04 (20060101);