Fiber termination enclosure with modular plate assemblies

Certain types of fiber termination enclosures include an enclosure and at least one of a plurality of plate module mounting assemblies. Example plate module mounting assemblies include a termination panel plate assembly; a splice tray plate assembly; a cable spool plate assembly; and a drop-in plate assembly. Example cable spool plate assemblies include a cable spool arrangement rotationally coupled to a mounting plate, which fixedly mounts within the enclosure housing. A stand-off mount element may be disposed on the front of the cable spool arrangement to rotate in unison with the cable spool arrangement. The stand-off mount element may include one or more termination adapters.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/615,999, filed Jun. 7, 2017, now U.S. Pat. No. 10,401,584, which is a continuation of U.S. application Ser. No. 15/243,143, filed Aug. 22, 2016, now U.S. Pat. No. 9,678,293, which is a continuation of U.S. application Ser. No. 14/979,803, filed Dec. 28, 2015, now U.S. Pat. No. 9,423,584, which is a continuation of U.S. application Ser. No. 14/127,851, filed Feb. 12, 2014, now U.S. Pat. No. 9,223,106, which is a National Stage of PCT/US2012/043827, filed Jun. 22, 2012, which claims the benefit of U.S. Application Nos. 61/500,769, filed Jun. 24, 2011, and titled “Fiber Termination Enclosure with Internal Cable Spool Assembly;” 61/500,764, filed Jun. 24, 2011, and titled “Fiber Termination Enclosure with Modular Plate Assemblies;” 61/507,263, filed Jul. 13, 2011, and titled “Fiber Termination Enclosure with Internal Cable Spool Assembly,” and 61/507,270, filed Jul. 13, 2011, and titled “Fiber Termination Enclosure with Modular Plate Assemblies;” the disclosures of which are hereby incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates to fiber optic enclosure, and more particularly, to a fiber optic enclosure with cable payout.

BACKGROUND

As demand for the telecommunication services increases, fiber optic networks are being extended in more and more areas (e.g., multiple dwelling units, apartments, condominiums, businesses, distributed antenna systems, cell towers, rural areas, single family residences). This growth has been particularly notable in the area of wireless communications, e.g., cellular, personal communication services (PCS) and other mobile radio systems. To efficiently distribute fiber optic services to these various different subscribers, system design flexibility is significant. System design flexibility can include the ability to efficiently provide different varying fiber optic cable lengths and the ability to efficiently provide fiber optic enclosures having interior components customized to meet a given customer's needs.

SUMMARY

An aspect of the present disclosure relates to a fiber optic enclosure assembly. The fiber optic enclosure includes an enclosure housing that is adapted to optically connect incoming fibers to outgoing fibers. One or more modular plate assemblies may be mounted within an interior of the enclosure to customize the fiber optic enclosure.

In accordance with some aspects of the disclosure, certain types of modular plate assemblies include termination adapter arrangements. In accordance with some aspects of the disclosure, certain types of modular plate assemblies include splice trays arrangements. In accordance with some aspects of the disclosure, certain types of modular plate assemblies include cable spool arrangements.

In accordance with some aspects of the disclosure, modular cable port arrangements may be disposed at the enclosure housing. In some implementations, various types of modular cable port arrangements can be selectively mounted at the enclosure housing.

In accordance with certain aspects of the disclosure, a cable spool arrangement is connected to an interior of the enclosure to rotate relative to the enclosure. One or more fiber cables may be paid out from the enclosure by pulling one end of the fiber cable through a cable port to unwind the fiber cable from the cable spool arrangement. In certain implementations, one or more adapters may be disposed on the cable spool arrangement to rotate in unison with the cable spool arrangement. In certain implementations, the termination adapters are disposed on a stand-off mount element that is spaced from the cable spool arrangement, but configured to rotate in unison with the cable spool arrangement.

A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a fiber termination enclosure having an example mounting assembly disposed therein in accordance with the principles of the present disclosure;

FIG. 2 is a front, top perspective view of an example fiber termination enclosure including an enclosure configured in accordance with the principles of the present disclosure and shown with a door in a closed position;

FIG. 3 is a front, bottom perspective view of the example fiber termination enclosure of FIG. 2 in which two cable port modules are visible;

FIG. 4 is a front, top perspective view of the example fiber termination enclosure of FIG. 2 shown with the door in the open position and a cable spool mounting assembly exploded from the interior of the enclosure;

FIG. 5 is a schematic diagram of the fiber termination enclosure of FIG. 4 configured in accordance with the principles of the present disclosure;

FIG. 6 is a front, top perspective view of the example fiber termination enclosure of FIG. 4 in which with the cable spool mounting assembly is exploded to show various example components of the cable spool mounting assembly including a mounting plate, a cable spool arrangement, and a stand-off mount element;

FIG. 7 is a front, top perspective view of the example fiber termination enclosure of FIG. 6 shown with the cable spool mounting assembly installed within the interior of the enclosure housing;

FIG. 8 is a front, top perspective view of the example fiber termination enclosure of FIG. 2 shown with an example splice tray reel mounting assembly installed within the interior of the enclosure housing;

FIG. 9 is a front, top perspective view of the example fiber termination enclosure of FIG. 2 shown with an example termination panel mounting assembly installed within the interior of the enclosure housing;

FIG. 10 is a front, top perspective view of the example fiber termination enclosure of FIG. 9 shown with an example cover disposed over the cable spool mounting assembly;

FIG. 11 is a front, top perspective view of the example fiber termination enclosure of FIG. 2 shown with the door in the open position, an example sliding adapter mounting assembly disposed within the interior of the enclosure, and an example drop-in plate mounting assembly exploded from the interior of the enclosure;

FIG. 12 is a front, top perspective view of the example fiber termination enclosure of FIG. 11 shown with the example drop-in plate mounting assembly disposed within the interior of the enclosure and partially cabled;

FIG. 13 is a front, top perspective view of the example fiber termination enclosure of FIG. 12 shown with cabling extending between the example drop-in plate mounting assembly and the example sliding adapter mounting assembly;

FIG. 14 is a front, top perspective view of the example fiber termination enclosure of FIG. 2 shown with an example splice tray mounting assembly and an example sliding adapter mounting assembly disposed within the interior of the enclosure housing;

FIG. 15 is a front, top perspective view of the example fiber termination enclosure of FIG. 14 shown with an example cover disposed over the splice tray mounting assembly; and

FIG. 16 is a schematic representation of a telecommunications network having exemplary features of aspects in accordance with the principles of the present disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.

FIG. 1 is a schematic diagram of an example fiber optic enclosure 100.

The fiber optic enclosure 100 includes a housing, generally designated 110, at which telecommunications cables (e.g., optical and/or electrical cables) can be optically coupled and/or stored. One or more modular plate assemblies 120 may be mounted within the interior of the enclosure housing 110. Each modular plate assembly 120 includes a mounting plate 121 that is configured to mount to the enclosure housing 110 in a stationary configuration. Each modular plate assembly 120 includes a coupling arrangement 170 at which one or more optical fibers 182 of at least a first fiber cable 180 are optically coupled to optical fibers 192 of at least a second fiber cable 190. The fiber cables 180, 190 enter the enclosure housing 110 through cable ports 101.

In use, the enclosure housing 110 is deployed by securing the enclosure housing 110 to a mounting location (e.g., a wall, a pole, etc.). In some implementations, the enclosure housing 110 has brackets disposed on the top and bottom walls 111, 112. In other implementations, the enclosure housing 110 may have brackets disposed on other walls to secure the enclosure housing 110 to the mounting location. In still other implementations, the enclosure housing 110 is adapted to be otherwise secured to a mounting location.

FIGS. 2-4 illustrate one example enclosure housing 110 having a top wall 111, a bottom wall 112 (FIG. 3), a first side wall 113, a second side wall 114 (FIG. 4), and a rear wall 115 (FIG. 4) defining an interior. The enclosure housing 110 also defines an open front 116 that provides access to the interior of the enclosure housing 110 (see FIG. 4). At least one cover 118 is coupled to the enclosure housing 110 to selectively close the open front 116 of the enclosure housing 110. The cover 118 is pivotally coupled to the enclosure housing 110 using one or more hinges 103 disposed on one of the side walls 113, 114 (see FIG. 4). The hinge 103 allows the cover 118 to selectively pivot between a closed position (shown in FIG. 2) and an open position (shown in FIG. 4). The cover 118 can be held closed using locking flanges 117, 119 (FIG. 4). In one implementation, the enclosure housing 110 is molded from a plastic material. In one implementation, the enclosure housing 110 is molded from a plastic material. In another implementation, the enclosure housing 110 is molded from a metal material.

In some implementations, the enclosure housing 110 defines one or more cable ports 101 (FIG. 1) at which cables 180, 190 may enter and exit the interior of the enclosure housing 110. In certain implementations, the cable ports 101 are disposed at the bottom wall 112 of the enclosure housing 110. In other implementations, however, the cable ports 101 may be disposed elsewhere on the enclosure housing 110, such as at the top wall 111, the rear wall 115, or one of the side walls 113, 114.

In some implementations, the enclosure housing 110 is configured to receive one or more cable port modules 150 at the cable ports 101 (e.g., see FIGS. 3 and 4). For example, the cable ports 101 may define openings 155 (FIG. 4) in one or more walls 111-115 of the enclosure housing 110 at which the cable port modules 150 may be received. Each cable port module 150 receives one or more cables 180, 190. In some implementations, a first cable port module 150 may receive one or more service cables and a second cable port module 150 may receive one or more subscriber cables. In other implementations, the same cable port module 150 may receive both service cables and subscriber cables. In still other implementations, the enclosure housing 110 may receive an even greater number of cable port modules 150, each of which may receive service cables and/or subscriber cables.

In certain implementations, a variety of cable port modules 150 may be configured to fit at the same opening 155, thereby enabling a user to select which of the cable port modules 150 to mount at the opening 155. In certain implementations, the cable port modules 150 may be removably mounted to the enclosure housing at the openings 155, thereby enabling a user to switch which cable port modules 150 are mounted at any particular enclosure housing 110.

Two example implementations of cable port modules 150, 150′ are shown in FIGS. 3 and 4. Each of the cable port modules 150, 150′ includes a port panel 151 configured to be mounted at an opening 155 defined in an enclosure housing 110. For example, the port panel 151 may define one or more openings 152 through which fasteners (e.g., screws, bolts, etc.) may extend to secure the port panel 151 to one of the walls 111-115 of the enclosure housing 110. One or more grommets extend through the port panel 151. Each grommet enables one or more cables 180, 190 or fibers to enter the enclosure housing 110 while inhibiting the ingress of environmental contaminants, such as water, dirt, and rodents.

A first example cable port module 150 includes a first type of grommet 153 and a second type of grommet 154. The second type of grommet 154 is larger than the first type of grommet 153. In the example shown, a cable 180 to be dispensed extends through the smaller grommet 153. A second example cable port module 150′ includes only the second type of grommet 154 extending through the port panel 151. Other implementations may include still other types of cable port modules, each having its own configuration of grommets.

Referring to FIGS. 4-15, the mounting plates 121 of the modular plate assemblies 120 are adapted and configured to be mounted to the rear wall 115 of the enclosure housing 110. In some implementations, the rear wall 115 defines one or more openings through which fasteners may extend to secure a mounting plate 121 to the rear wall 115. In other implementations, the rear wall 115 may include one or more pegs over which the mounting plate 121 may be pressed. In other implementations, one or more panel fastening structures can be attached, secured, or mounted to the rear wall 115. In still other implementations, the rear wall 115 may include one or more pems 104 that are pressed into the rear wall 115 (see FIG. 4). The pems 104 are sized and configured to be inserted through openings 122 defined in the mounting plate 121. The pems 104 define threaded passages that are configured to receive fasteners that secure the mounting plate 121 to the rear wall 115, or can be exterior threaded shanks.

In accordance with some aspects, the mounting plates 121 of the modular plate assemblies 120 extend over a majority of the area of the rear wall 115. In some implementations, a mounting plate 121 has a rectangular shape (e.g., see FIG. 4). In other implementations, a mounting plate 121 may define one or more cutouts 129 or otherwise have a non-rectangular shape (e.g., see FIGS. 9-12). In accordance with other aspects, the mounting plates 121 of the modular plate assemblies 120 may extend over only a portion of the area of the rear wall 115. For example, some implementations, of the mounting plates 121 may be configured to extend over about half of the area of the rear wall 115 (e.g., see FIGS. 11-14).

FIGS. 4-7 illustrate a first implementation of a modular plate assembly 120 that includes a cable spool arrangement 130 (FIG. 6) that is rotationally mounted to the modular plate assembly 120. As shown in FIG. 5, the cable spool arrangement 130 includes a first storage area 102, a second storage area 104, and a termination region 108. In some implementations, the termination region 108 is spaced from the second storage area 104, which is spaced from the first storage area 102. In certain implementations, the termination region 108 is spaced forwardly of the second storage region 104, which is spaced forwardly of the first storage region 102 (e.g., see FIG. 4). In certain implementations, the second storage area 104 forms part of a protected fiber management region 106 at which optical fibers can be separated out from optical cables.

At least a first fiber cable (e.g., distribution cable) 180 and at least a second cable (e.g., subscriber cable) 190 enter the housing 110 through cable ports 101. Fibers 192 of the second fiber cable 190 are routed to the termination region 108. The first fiber cable 180 is routed to the first storage area 102 of the cable spool arrangement 130. From the first storage area 102, the first fiber cable 180 is routed to the second storage area 104. The first fiber cable 180 is broken out into individual optical fibers 182 at the protected fiber management region 106. The fibers 182 are routed to the termination region 108 at which the optical fibers 184 are connected to optical fibers 192 of the second fiber cable 190.

The fiber optic enclosure 100 provides an enclosure from which lengths of a cable (e.g., a distribution cable) 180 can be dispensed following the mounting of the fiber optic enclosure 100 to a mounting location. The distribution cable 180 is dispensed from the fiber optic enclosure 100 by pulling on an end (e.g., a connectorized end) 185 of the cable 180 (see FIGS. 4 and 7). As the distribution cable 180 is dispensed, the cable spool arrangement 130 rotates about an axis relative to the stationary mounting plate 121 of the fiber optic enclosure 100. In the event that there is a residual length of distribution cable 180 that is not dispensed during the cable payout, the fiber optic enclosure 100 can store this residual length.

As shown in FIG. 6, the cable spool mounting assembly 120 includes a mounting plate 121 and a cable spool arrangement 130. The mounting plate 121 includes a first side 124 and an opposite second side 123. The mounting plate 121 is adapted for stationary mounting to the rear wall 115 of the housing enclosure. In certain implementations, the second side 123 of the mounting plate 121 is configured to be mounted to an interior surface of the rear wall 115 so that the mounting plate 121 is disposed within the interior of the housing enclosure 110. For example, in certain implementations, the mounting plate 121 defines one or more fastener openings 122 that are disposed to align with fastener openings provided on the rear wall 115 of the housing enclosure 110. Certain types of mounting plates 121 extend along substantially the entire rear wall 115 of the enclosure housing 110.

The cable spool arrangement 130 includes a drum 131 extending between first and second support flanges 132, 133 to form a first cable spool 134. The first cable spool 134 defines the first storage region 102 (FIG. 5). In some implementations, the cable spool arrangement 130 also includes a termination region 108 (FIG. 5). In certain implementations, a protected fiber management region 106 (FIG. 5) is defined between the first storage region 102 and the termination region 108. For example, in certain implementations, in FIG. 6, the cable spool arrangement 130 includes a stand-off mounting assembly 140, at which the termination region 108 (FIG. 5) is disposed as will be described in more detail herein. The protected fiber management region 106 (FIG. 5) is defined between the stand-off mounting assembly 140 and one of the first cable spool 134 (e.g., see FIG. 4).

In certain implementations, the drum portion 131 of the first cable spool 134 is generally cylindrical in shape. The drum portion 131 includes a first end portion that couples to the first support flange 132 and an oppositely disposed second end portion that couples to the second support flange 133. The support flanges 132, 133, which are generally parallel to each other, are configured to rotate with the drum 131. An outer surface of the drum 131 and inner surfaces of the support flanges 132, 133 define the first storage region 102 (FIG. 5) within which optical fibers or cables (e.g., distribution cable 180) may be coiled.

The drum portion 131 has a sufficient diameter to provide bend radius protection to optical fibers wound around the fiber spool 134. The drum portion 131 defines a central bore that extends through the drum portion 131. In the subject embodiment, the central bore is adapted to receive a spindle 129 (FIG. 6). In certain implementations, the spindle 129 extends through the bore in the drum 131 and secures to the second side 123 of the mounting plate 121. For example, in certain implementations, the mounting plate 121 defines openings 125 at which the spindle 129 is fastened to the mounting plate 121. The first cable spool 134 is configured to rotate about the spindle 129 relative to the mounting plate 121.

The support flanges 132, 133 are sized and shaped to retain the optical fibers wound around the drum 131 in the first storage region 102. In some implementations, the support flanges 132, 133 are generally circular. In certain implementations, the support flanges 132, 133 have a sufficient diameter to cover a majority of a surface area of the mounting plate 121. In other implementations, however, one or both of the support flanges 132, 133 may have a smaller diameter.

In some implementations, the cable spool arrangement 130 is configured to be releasably locked in a rotationally fixed position relative to the mounting plate 121. For example, in certain implementations, the mounting plate 121 includes a forwardly extending flange 126 that is configured to extend past the support flanges 132, 133 of the drum 131 to interact with the front of the cable spool arrangement 130 (see FIG. 6). The forwardly extending flange 126 defines an opening 127. The second flange 133 of the cable spool 134 defines an opening 136 that is disposed to align with the opening 127 of the forwardly extending flange 126 when the cable spool arrangement 130 is disposed in one rotational position. In certain implementations, the opening 136 is defined in a tab 135 that extends outwardly from the generally annular circumference of the second support flange 133. A fastener 128 may be inserted through the openings 136, 127 to lock the cable spool arrangement 130 in the rotationally fixed position.

In some implementations, the second support flange 133 of the cable spool 134 defines an aperture 139 through which optical fibers or cables (e.g., distribution cable 180) may pass between the first storage area 102 and the front of the cable spool 134. In certain implementations, the cables pass through aperture 139 from the first storage region 102 to the protected fiber management region 106. For example, in certain implementations, the aperture 139 is located directly adjacent to the protected fiber management region 106 and allows cables from inside the first storage region 102 of the spool to be routed from the drum surface 131 to the protected storage region 106.

The protected fiber management region 106 (FIG. 5) provides a mounting location for a fan out arrangement. The fan out arrangement includes one or more fan outs 138 disposed between the back side of the stand-off 140 and the front side of the cable spool 134 (see FIG. 4). For example, the fan outs 138 may be disposed on the front side of the second support flange 133 of the cable spool 134. Accordingly, the fan outs 138 rotate with the cable spool 134. The cable 180 wrapped around the supplemental spool region 104 can be routed to one of the fan outs 138 where individual optical fiber are broken out to form individual fiber optic pigtails 182. The pigtails 182 have ends connectorized by fiber optic connectors that are inserted into the fiber optic adapters 147 at the termination field 108 (see FIG. 4). Fiber optic connectors corresponding to fibers 192 of subscriber cables 190 also may be inserted into the adapters 147 to provide optical connections between the subscriber cables 190 and the cables 180 routed from the first cable spool 134.

The protected fiber management region 106 also can include bend radius protectors 137 attached to the front spool flange 133 (FIG. 6). The bend radius protector 137 can form a supplemental spooling region 104 where cables routed from drum 131 through aperture 139 can be wrapped/spooled to provide cable storage and cable management. The pigtails 182 also may be wrapped/spooled around the bend radius limiters 137. In some implementations, the supplemental spooling region 104 provides strain relief to the cables (e.g., distribution cables) 180. Axial loads applied to the outside end 185 of the cables 180 will be transferred through the cable 180 to the wrapped portions of the cable 180. However, the axial loads will not be transferred to the connectorized ends of the pigtails 182. Accordingly, pulling on the first cable end 185 will not detach the connectorized pigtails 182 from the adapters 147 at the termination region 108.

Still referring to FIGS. 4-7, a stand-off mount element 140 may be coupled to the front of the first cable spool 134. For example, the stand-off mount element 140 may be secured to the second support flange 133 of the first cable spool 134 so that the stand-off mount element 140 unitarily rotates with the first cable spool 134. The stand-off mount element 140 provides a front plate 141 where optical components (e.g., fiber optic adapters, splitters, splice trays, spools, bend radius protector, etc.) can be mounted. For example, fiber optic adapters 147 may form a termination region 108 on the front plate 141. Cable management structures (e.g., bend radius limiters, spools, etc.) 148 also may be provided on the stand-off plate 141. In the example shown, two opposing bend radius limiters 148 form a fiber spool on the stand-off plate 141.

In certain implementations, one or more legs 142 extend rearwardly from the stand-off plate 141 of the stand-off mount element 140. Each leg 142 defines an opening 143 configured to receive a peg 145 or fastener to secure the feet 143 to the front support flange 133 of the cable spool 134. In the example shown, the stand-off mount element 140 includes four legs 142. In other implementations, however, the stand-off mount element 140 may include greater or fewer legs 142. In still other implementations, the legs 142 may be unitary with the cable spool 134 and secure to the stand-off plate 141.

The stand-off plate 141 is forwardly offset from the front side of the spool flange 133, thereby forming the protected fiber management region 106 between the front side of the first cable spool 134 and back side of the stand-off mount element 140 (e.g., see FIG. 4). The separated fibers 184 in the protected fiber management region 106 are routed around the bend radius limiters 137 or other management structures on the front of the cable spool 134 to the stand-off mount element 140. In the example shown, the separated fibers 184 have connectorized ends that plug into first ports of termination adapters 147 disposed at the stand-off plate 141.

Components disposed on the stand-off mount element 140 are spaced forwardly of the cable spool 134. Accordingly, the fiber optic adapters 147 are disposed on a different layer or plane than the fan outs 138, which are disposed on a different layer or plane than the first cable spool 134. In certain implementations, the fan outs 138 are disposed on the same layer or plane as the bend radius limiters 137. The spacing between the cable spool layer and the stand-off layer enhances slack storage of optical fibers routed through the protected fiber management region 106. In some implementations, the spacing between the cable spool layer and the stand-off layer inhibits over-bending of the fibers when routed between the fan out arrangements 138 and the fiber optic adapters 147.

In certain implementations, the termination adapters 147 are included in one or more termination modules 146. In certain implementations, the adapter modules 146 are sliding adapter modules. Similar sliding adapter modules have been described in commonly owned U.S. Pat. Nos. 5,497,444; 5,717,810; 6,591,051; and 7,416,349, the disclosures of which are hereby incorporated by reference. In the example shown, the stand-off mount element 140 includes six sliding adapter modules 146, each holding four fiber optic adapters 147. In other implementations, the stand-off mount element 140 may include greater or fewer sliding adapter modules 146 holding greater or fewer termination adapters 147. In certain implementations, sufficient slack length of the separated fibers 182 is left between the fan out arrangement 138 and the adapters 147 to accommodate the sliding movement of the sliding adapter modules 146.

In some implementations, the cable spool arrangement 130 may be precabled at the factory or manufacturing center with one or more optical fibers or cables 180. For example, one or more multi-fiber cables 180 may be wound around the storage area 102 of the cable spool 134. In certain implementations, the multi-fiber cables 180 may be precabled to pass through the aperture 139 to the fan out arrangement 138 disposed in the protected fiber management region 106 (e.g., see FIGS. 4 and 7). The fan out arrangement 138 separates the cables 180 into pigtails 182. In certain implementations, the fan out arrangement 138 also upjackets the fibers 182. In other implementations, however, the cable spool arrangement 130 may be cabled with the one or more multi-fiber cables 180 after the enclosure housing 110 is deployed.

The precabled cable spool mounting assembly 120 is mounted within the enclosure housing 110. For example, the mounting plate 121 is secured to a rear wall 115 of the enclosure housing 110. When the mounting assembly 120 is installed in the enclosure housing 110, the second ends of the multi-fiber cables 180 may be routed through one of the cable ports so that the second ends are disposed outside of the enclosure housing 110. In some implementations, the second ends of the one or more precabled multi-fiber cables 180 may be terminated at one or more multi-fiber connectors 185. In other implementations, the second end of a precabled multi-fiber cable 180 is separated into two or more connectorized optical fibers (jacketed or unjacketed). In still other implementations, the second ends of the multi-fiber cables 180 are configured to be spliced to one or more optical fiber cables.

A user may pull on the second ends to dispense the stored length of cable 180 from the cable spool arrangement 130. For example, a user may pull a second end of a cable 180 to a fiber distribution hub, drop terminal, or other network connection. Because the adapters 147 rotate in unison with the cable spool arrangement 130, the second end of each multi-fiber cable 180 may be paid out without interfering with the cabling of the first ends of the multi-fiber cable 180. When the second ends 185 of the one or more multi-fiber cables 180 are each connected to the network, the fastener 128 may be inserted through aligned openings 135, 128 to secure the cable spool arrangement 130 in a fixed rotational position relative to the mounting plate 121.

When the cable spool arrangement 130 is secured in a rotationally fixed position, additional optical fiber cables may be routed into the enclosure housing 110 to secure to second ports of the termination adapters 147. For example, the additional optical fiber cables may be routed into the enclosure through one or more cable ports defined in the enclosure housing 110. The termination adapters 147 are configured to align and optically couple connectors terminating the additional optical cables with the connectorized ends of the multi-fiber cable 180 plugged into the first ports of the adapters 147.

FIG. 8 illustrates a second example modular plate assembly 220 implemented as a second example cable spool mounting assembly 120 for mounting within the enclosure housing 110. The second cable spool mounting assembly 220 includes a rectangular mounting plate 221 that extends over a majority of the rear wall 115. A cable spool arrangement 241 is disposed on the mounting plate 221 and is configured to rotate relative to the mounting plate 221 (e.g., about a spindle). Since the mounting plate 221 is configured to remain stationary on the rear wall 115, the cable spool arrangement 241 is configured to rotate relative to the enclosure housing 110.

The cable spool arrangement 241 defines a storage area including a drum about which optical fibers or cables (e.g. of a multi-fiber distribution cable 180) may be coiled. The drum has a sufficient diameter to provide bend radius protection to optical fibers wound around the fiber spool arrangement 241. Rotating the cable spool arrangement 241 dispenses or retracts the optical fibers or cables wound around the drum. In some implementations, the cable spool arrangement 241 may be locked in a rotational orientation relative to the mounting plate 221.

In certain implementations, one or more splice trays 242 are disposed on the cable spool arrangement 241. Each splice tray 242 is configured to optically couple together two or more optical fibers. For example, each splice tray 242 may optically couple together at least one optical fiber of the distribution cable 180 and at least one optical fiber of a subscriber cable 190 (FIG. 1). Certain types of splice tray 242 may be pivoted between open and closed positions to provide access to the splices contained therein. In certain implementations, the splice trays 242 are stacked upon each other so that a bottom of the stack extends over the cable spool arrangement 241 and a top of the stack faces the open front 116 of the enclosure housing 110.

One or more fiber management structures may be disposed on the cable spool arrangement 241. For example, in certain implementations, one or more bend radius limiters 243 are disposed on a front of the cable spool arrangement 241. In the example shown, four bend radius limiters are disposed at a top, bottom, and sides of the cable spool arrangement 241. The cable spool arrangement 241 also defines one or more channels 244 through which optical fibers or cables can pass between the storage area of the cable spool arrangement 241 and the splice trays 242. In the example shown, the cable spool arrangement 241 defines four openings 244 spaced between the bend radius limiters 243.

In some implementations, the second cable spool mounting assembly 220 may be precabled at the factory or manufacturing center with one or more distribution cables 180. The one or more distribution cables 180 may be wound around the drum in the storage area of the second cable spool arrangement 241. In certain implementations, the first end of each distribution cable fiber may be routed through one of the openings 244 in the cable spool arrangement 241, around one or more of the bend radius limiters 243, and into one of the splice trays 242 disposed at a front of the cable spool arrangement 241 (e.g., see FIG. 8).

The precabled second cable spool mounting assembly 220 is mounted within the enclosure housing 110 to deploy the one or more distribution cables 180. For example, the mounting plate 221 is secured to the rear wall 115 of the enclosure housing 110 as described above. The second ends 185 of the distribution cables 180 may be routed out of the housing 110 through one of the cable port modules 101 so that the second ends 185 are disposed outside of the enclosure housing 110 (e.g., see FIG. 8). Additional optical fiber cables (e.g., subscriber cables 190 of FIG. 1) may be routed into the enclosure housing 110 (e.g., through the same or other port modules 101).

Unconnectorized ends of the subscriber cable fibers may be optically coupled to the first ends of the service cable fibers at the splice trays 242. For example, each subscriber cable fiber may be routed from the respective cable port module 101 to the respective splice tray 242 (e.g., either directly or after being wound around some of the bend radius limiters 243 of the second cable spool mounting assembly 220.

FIGS. 9 and 10 illustrate a third example modular plate assembly 120 implemented as a termination panel mounting assembly 320. The termination panel mounting assembly 320 includes a mounting plate 321 that is sized to extend over a majority of the rear wall 115 of the enclosure housing 110. In particular, the mounting plate 321 has a height that extends over a majority of a height of the rear wall 115 and the mounting plate 321 has a width that extends over a majority of a width of the rear wall 115. The mounting plate 321 defines one or more apertures 322 or pems that facilitate connection to the rear wall 115.

Certain types of mounting plates 321 define one or more cutouts 329. In the example shown in FIG. 9, the mounting plate 321 defines a cutout 329 at an upper, right corner of the mounting plate 321, thereby resulting in an L-shaped mounting panel 321. In other implementations, the mounting plate 321 may have other configurations.

A termination plate 351 is coupled to the mounting plate 321. In some implementations, the termination plate 351 is a bent portion of the mounting plate 321. In other implementations, the termination plate 351 is a separate piece that attaches to the mounting plate 321 (e.g., via snap-fit connection, latches, fasteners, etc.). In the example shown, the termination plate 351 extends vertically with a first side facing the first side wall 113 and a second side facing he second side wall 114 of the enclosure housing 110. In other implementations, the termination plate 351 has a first side that faces the rear wall 115 and a second side that faces the open front 116 of the enclosure housing 110.

One or more termination adapters 352 are disposed on the termination plate 351. Each termination adapter 352 has a first port and a second port. In the example shown, the first port faces the first side wall 113 and the second port faces the second side wall 114 of the enclosure housing 110. In other implementations, the adapter ports may face the rear wall 115 and open front 116 of the enclosure housing 110. In still other implementations, the adapters 352 and the termination plate 351 may be oriented at any desired angle relative to the mounting plate 321. In certain implementations, adapter dust caps 353 may be provided at the adapter ports.

In certain implementations, one or more cable management structures may be provided on the termination plate 351 or mounting plate 321. In the example shown, four bend radius limiters 354 are disposed on a front of the mounting plate 321. The bend radius limiters 354 are configured to form two fiber spools. In certain implementations, the bend radius limiters 354 form a first fiber spool located between the termination plate 351 and the first side wall 113 of the housing 110 and a second fiber spool located between the termination plate 351 and the second side wall 114 of the housing 110. In certain implementations, the bend radius limiters 354 are located substantially below the termination plate 351. In other implementations, the same or other types of cable management structures may be disposed in different configurations.

During deployment of the termination panel mounting assembly 350, one or more optical fiber cables (e.g., distribution cables 180) may be routed into the enclosure housing 110 (e.g., through one or more port modules 101). Connectorized ends of the distribution cables may be secured to the first ports of the termination adapters 352. Additional optical fiber cables (e.g., subscriber cables 190) also may be routed into the enclosure housing 110 (e.g., through the same or other port modules 101). Connectorized ends of the subscriber cables may be secured to the second ports of the termination adapters 352, which align and optically couple together the connectorized ends of the subscriber cables with the connectorized ends of the service cables.

In certain implementations, a cover 330 may be positioned within the enclosure housing 110 to enclose or otherwise inhibit access to at least a portion of the optical components location within the enclosure housing 110 (see FIG. 10). In some implementations, the cover 330 extends from one of the side walls 113, 114 to the termination plate 351 to block access to at least some of the fiber connectors plugged into one side of the termination adapters 352. In the example shown, the cover 330 extends from the second side wall 114 to the termination plate 351 to block access to any cables (e.g., service cables) entering the enclosure housing 110 through the left cable ports 101, while allowing access to the cables (e.g., subscriber cables) entering the enclosure housing 110 through the right cable ports 101. In other implementations, the cover 330 may extend across the entire termination panel mounting assembly 320.

In the example shown, the cover 330 includes a front plate 366 and a side plate 367 forming an L-shaped flange. The front plate 366 extends from the second side wall 114 of the enclosure to the termination plate 351, thereby covering the bend radius limiters 354 located to the left of the termination plate 351. The front plate 366 also blocks access to the second ports of the adapters 352 from the open front 116 of the enclosure housing 110. The side plate 367 extends downwardly from the termination plate 351 to inhibit access to the second side of the termination plate 351 from the right side of the enclosure housing interior. In other implementations, the cover 330 may include two side plates and be located at a central portion of the enclosure interior. In still other implementations, the cover 330 may include a planar panel that extends across the open front 116 of the enclosure housing 110.

In some implementations, the cover 330 defines one or more finger holes 368 by which the cover 330 may be installed and/or removed from the enclosure housing 110. For example, in one implementation, the front plate 366 of the cover 330 defines two finger holes 368. In other implementations, the cover 330 may include a handle or other structure to facilitate manipulation of the cover 330. In certain implementations, the cover 330 may be secured in place by a lock arrangement 369.

FIGS. 11-13 illustrate fourth and fifth example modular plate assemblies 120 implemented as an example drop-in plate mounting assembly 400 and an example sliding adapter mounting assembly 450, respectively. The fourth and fifth modular plate assemblies 400, 450 each extend over only a portion of the rear wall 115. For example, each of the fourth and fifth modular plate assemblies 400, 450 includes a mounting plate 401, 451 that has a height that extends substantially over a height of the rear wall 115 and a width that extends over less than half of the rear wall 115. In some implementations, the mounting plate 401, 451 is rectangular. In other implementations, the mounting plate 401, 451 is generally rectangular with notched corners. The mounting plate 401, 451 defines one or more apertures 402, 452 through which fasteners extend to secure the mount plate 401, 451 to the enclosure housing 110.

The drop-in plate assembly 400 includes a drop-in plate 411 defining one or more holes 412 at which adapters 413 may be secured. In some implementations, the drop-in plate 411 is formed from a bent portion of the mounting plate 401. In other implementations, the drop-in plate 411 is attached to the mounting plate 401. In some implementations, the drop-in plate 411 extends generally horizontally (i.e., parallel with the top wall 111 and bottom wall 112 of the enclosure housing 110). In other implementations, the drop-in plate 411 may be angled relative to the top and bottom walls 111, 112.

In certain implementations, the adapters 413 are snap-fit or press-fit into the holes 412 of the drop-in plate 411. In some implementations, the adapters 413 are configured to receive and align multi-fiber (MPO) connectors. A description of example MPO connectors can be found in U.S. Pat. No. 5,214,730, the disclosure of which is hereby incorporated herein by reference. In certain implementations, the adapters 413 are configured to receive and align hardened multi-fiber adapters (HMFOCs). A description of example HMFOCs can be found in U.S. Pat. No. 6,648,520, the disclosure of which is hereby incorporated herein by reference. In other implementations, the adapters 413 are configured to receive and align single optical connectors (e.g., LC-connectors, SC-connectors, ST-connectors, FC-connectors, etc.).

In certain implementations, the drop-in plate assembly 400 includes fiber management structures to facilitate routing optical fibers or cable between the adapters 413 and other components within the enclosure housing 110. For example, the drop-in plate assembly 400 may include bend radius limiters extending forwardly from the mounting plate 401. In the example shown, smaller bend radius limiters 414 are disposed above the drop-in plate 411 and larger bend radius limiters 415 are disposed below the drop-in plate 411. The larger bend radius limiters 415 form a slack storage spool.

The example sliding adapter mounting assembly 450 includes at least one sliding adapter module 461. Each sliding adapter module 461 includes a plurality of adapters that are slideably mounted to rails. In the example shown, each sliding adapter module 461 includes a row of six adapters. In the example shown, the example sliding adapter mounting assembly 450 includes a first group of two sliding adapter modules 461 spaced from another group of two sliding adapter modules 461. In other implementations, however, the example sliding adapter mounting assembly 450 may greater or fewer groups each having greater or fewer sliding adapter modules 461.

In some implementations, the sliding adapter modules 461 are configured to slide generally horizontally in a forward-rearward direction relative to the enclosure housing 110. In certain implementations, the sliding adapter modules 461 slide at an angle (e.g., at least partially in an upward-downward direction). In the example shown, the adapter modules 461 are oriented so that ports of the adapter modules 461 face towards the upper and lower walls 111, 112 of the enclosure housing 110. In other implementations, the adapter modules 461 may be oriented to face the side walls 113, 114 of the enclosure housing 110.

As noted above, additional details pertaining to example sliding adapter modules are provided in commonly owned U.S. Pat. Nos. 5,497,444; 5,717,810; 6,591,051; and 7,416,349, the disclosures of which are incorporated above.

The example sliding adapter mounting assembly 450 also includes a fanout arrangement 462 including one or more fanouts. Each fanout separates optical fibers from a multi-fiber cable. In the example shown, the fanout arrangement 462 is disposed between the two groups of adapter modules 461. In other implementations, the fanout arrangement 462 may be disposed elsewhere on the mounting panel 401. In certain implementations, two or more fanouts are stacked together so that a bottom of the stack abuts the mounting panel 401 and a top of the stack faces the open front 116 of the enclosure housing 110.

The example sliding adapter mounting assembly 450 also includes fiber management structures to facilitate routing optical fibers or cables from the sliding adapter modules 461 to other components within the enclosure housing 110. In certain implementations, the sliding adapter mounting assembly 450 may include one or more bend radius limiters 463 (FIG. 11). In the example shown, each group of adapter modules 461 has two corresponding bend radius limiters 463 at a bottom of the mounting panel 401 and at least one bend radius limiter 463 at a top of the mounting panel 401.

In certain implementations, the mounting panel 401 also may include guide flanges 464 (FIG. 11) that facilitates retaining optical fibers or cables within the area of the mounting panel 401. In some implementations, the mounting panel 401 defines a guide flange 464 on each side of the mounting panel 401. In the example shown in FIG. 11, each guide flange 464 is bent forwardly from the mounting panel 401. In other implementations, each guide flange 464 may be a separately attached piece. In the example shown, each guide flange 464 extends vertically to inhibit the fibers from spilling into the rest of the enclosure interior.

In the example shown in FIG. 13, the mounting panel 401 includes retaining flanges 465 defining a guide channel through which one or more fibers or cables may be routed. The retaining flanges 465 include a first portion extending forwardly of the mounting plate and a second portion that extends across the fibers disposed in the channel. For example, each retaining flange 465 may have an L-shaped cross-section. The mounting panel 401 of FIG. 13 also includes another type of guide flange 466 is T-shaped. The guide flange 466 is disposed between the two groups of sliding adapter modules 461.

In some implementations, the sliding adapter mounting assembly 450 may be precabled at the factory or manufacturing center with one or more intermediate fibers 467. Some example intermediate fibers 467 each include a single optical fiber. First ends of the intermediate fibers 467 are connectorized and plugged into first ports of the sliding adapter modules 461. Second ends of the intermediate fibers 467 are joined at a fanout arrangement 462 to form one or more multi-fiber cables 417. In certain implementations, the second ends of the multi-fiber cables 417 are connectorized (e.g., see optical connectors 418 of FIG. 13). In other implementations, the second ends of the multi-fiber cables 417 are unconnectorized.

The separate intermediate fibers 467 are routed around from the sliding adapter modules 461 and around the fiber management structures (e.g., bend radius limiters 463 and/or any of flanges 464-466). In certain implementations, sufficient slack length of the separated fibers 467 is left between the fanout arrangement 462 and the adapter modules 461 to accommodate the sliding movement of the sliding adapter modules 461. In other implementations, however, the sliding adapter mounting assembly 450 may be cabled after the enclosure housing 110 is deployed. As shown in FIG. 13, the connectors 418 terminating the multi-fiber cables 417 may be plugged into the first ports of the adapters 418 of the drop-in plate assembly 400 when both the drop-in plate assembly 400 and the sliding adapter mounting assembly 450 are disposed within the enclosure housing 110.

A first set of additional optical fiber cables (e.g., distribution cables 180) may be routed into the enclosure housing 110 (e.g., through one or more ports 101). Connectorized ends of the first set of optical fiber cables 180 may be plugged into the second ports of the adapters 413 at the drop-in plate assembly 400. A second set of additional optical fiber cables (e.g., subscriber cables 190) may be routed into the enclosure housing 110 (e.g., through the same or other port modules 101). Connectorized ends of the second set of optical fiber cables 190 may be secured to second ports of the sliding adapter modules 461. Accordingly, optical signals carried by the first group of optical fibers 182 may be passed to the multi-fiber cables 417 via the drop-in adapters 413 and then to the second group of optical fibers 192 via the sliding adapter modules 461.

FIG. 14 illustrates a sixth example modular plate assemblies 120 implemented as an example splice tray mounting assembly 500. In the example shown, the splice tray mounting assembly 500 extends over only a portion of the rear wall 115. For example, the splice tray mounting assembly 500 includes a mounting plate 501 that has a height that extends substantially over a height of the rear wall 115 and a width that extends over less than half of the rear wall 115. In some implementations, the mounting plate 501 is rectangular. In other implementations, the mounting plate 501 is generally rectangular with notched corners. In still other implementations, the mounting plate 501 has notched sides. The mounting plate 501 defines one or more apertures 502 through which fasteners extend to secure the mount plate 501 to the enclosure housing 110.

In certain implementations, one or more splice trays 511 are disposed on the mounting plate 501. Each splice tray 511 is configured to optically couple together two or more optical fibers. For example, each splice tray 511 may optically couple together at least one optical fiber of a service cable and at least one optical fiber of a subscriber cable or an intermediate fiber. Certain types of splice trays 511 may be pivoted between open and closed positions to provide access to the splices contained therein. In certain implementations, the splice trays 511 are stacked upon each other so that a bottom of the stack extends over the mounting plate 501 and a top of the stack faces the open front 116 of the enclosure housing 110.

One or more support members 503 may aid in securing the splice tray 511 to the mounting plate 501. In FIG. 14, a support member 503 is illustrated as at least one flange bent forwardly from the mounting late 501 at one side of the splice tray 511. One or more fiber management structures may be disposed on the mounting plate 501 about the splice tray arrangement 511. For example, in certain implementations, one or more bend radius limiters 512 are disposed on a front of the mounting plate 501. In the example shown, four bend radius limiters 512 are disposed at four corners of the splice tray arrangement 511. In other implementations, greater or fewer bend radius limiters 512 may be disposed in other configurations.

When the splice tray mounting assembly 500 is installed within the interior of the enclosure housing 110, two or more optical fibers may be spliced at the splice trays 511. In some implementations, one or more optical fiber cables (e.g., service cables) may be routed into the enclosure housing 110 through one or more modular cable ports 101. One or more additional optical fiber cables (e.g., subscriber cables) also may be routed into the enclosure housing 110 through the same or other modular cable ports 101. In some implementations, unconnectorized ends of both groups of optical fiber cables are coupled together at the splice trays 511.

In other implementations, the splice tray mounting assembly 500 is disposed within the enclosure housing 110 with the sliding adapter mounting assembly 450. In such implementations, the splice trays 511 are configured to optically couple together unconnectorized ends of a first group of optical fibers (e.g., from one or more service cables) to unconnectorized ends of intermediate fibers 467 plugged into the sliding adapter modules 461 of the sliding adapter mounting assembly 450.

As shown in FIG. 15, an example cover 600 may be positioned within the enclosure housing 110 to enclose or otherwise inhibit access to at least a portion of the optical components location within the enclosure housing 110. In some implementations, the cover 600 extends from one of the side walls 113, 114 to an intermediate portion of the enclosure interior to block access to at least some of the fiber optical connectors disposed within the enclosure interior. In the example shown, the cover 600 extends from the second side wall 114 to cover the drop-in mounting assembly 400. Accordingly, the cover 600 blocks access to the drop-in adapters 413 and to any fiber optic connectors plugged into the drop-in adapters 413. In other implementations, the cover 600 may extend across both the drop-in mounting assembly 400 and the sliding adapter module assembly 450. In still other implementations, the cover 600 may extend across the splice tray mounting assembly 500.

In the example shown, the cover 600 includes a front plate 601 and a side plate 602 forming a generally L-shaped flange. The front plate 601 extends from one side of the mounting plate 401 of the drop-in mounting assembly 400 (or plate 501 of splice tray assembly 500) to the opposite side of the mounting plate 401. The front plate 601 also extends a majority of the distance between the top wall 111 and the bottom wall 112. The side plate 602 extends from the front plate 601 to the rear wall 115 of the enclosure housing 110. In certain implementations, the side plate 602 defines an opening, cutout, or other routing channel 603 through which optical fibers may be routed between the interior spaced enclosed by the cover 600 and the interior space accessible through the open front 116 of the enclosure housing 110. In other implementations, the cover 600 may include two side plates and be located at a central portion of the enclosure interior. In still other implementations, the cover 600 may include a planar panel that extends across the open front 116 of the enclosure housing 110.

In some implementations, the cover 600 defines one or more finger holes 604 by which the cover 600 may be installed and/or removed from the enclosure housing 110. For example, in one implementation, the front panel 601 of the cover 600 defines two finger holes 604. In other implementations, the cover 600 may include a handle or other structure to facilitate manipulation of the cover 600. In certain implementations, the cover 600 may be secured in place by a lock arrangement 605.

In some implementations, implementations of the fiber termination enclosure 100 disclosed above may be used in cell site applications. For example, certain implementations 992 of the fiber termination enclosure 100 may be mounted to a top of a cellular tower or in a hut at a base of a cellular tower. FIG. 16 is a schematic representation of one example telecommunications network 910 utilizing such a cell site application. In the depicted embodiment, the telecommunications network 910 is a cellular network 910. The cellular network 910 includes a cell site 912, a demarcation point 914, a backhaul 916 and a core network 918.

The cell site 912 creates an area of telecommunications coverage (i.e., a cell) in the cellular network 910. In one embodiment, the cell site 912 includes a tower or mast 920 and a hut 922 that is in communication with the tower 920. In another embodiment, the cell site 912 includes a hut 922 that is in communication with an antenna or a plurality of antenna. The tower 920 includes a base portion 924 and an oppositely disposed top portion 926. In the depicted embodiment, the base portion 924 is rigidly fixed at a mounting location. In one embodiment, the top portion 926 of the tower 920 may include an antenna. The remote transceiver 928 may be integrated into the antenna.

The top portion 926 includes a remote transceiver 928 (e.g., a remote radio head). The remote transceiver 928 is adapted to transmit and receive signals to and from devices (e.g., mobile phones, smart-phones, devices with wireless internet connectivity, etc.) of subscribers to the cellular network 910. In certain implementations, the top portion 926 of the tower 920 includes multiple remote transceivers. In certain implementations, some of the remote transceivers are backup remote transceivers. The top portion 926 of the tower 920 further includes a multi-service terminal 930. Terminal that are suitable for use as the multi-service terminal 930 of the present disclosure have been described in U.S. Pat. Nos. 7,292,763 and 7,512,304, the disclosures of which are hereby incorporated by reference in their entirety.

The fiber optic cable 952 from the multi-service terminal 930 is routed to an enclosure 992 at the hut 922. The fiber optic cable 952 includes a first end 962 and an oppositely disposed second end 964. The first end 962 includes a plurality of connectors that are engaged to the inner ports of the fiber optic adapters of the multi-service terminal 930. The second end 964 includes a multi-fiber connector that is adapted for engagement to one of the first and second multi-fiber connectors of the enclosure 992.

A jumper cable 966 provides communication between the enclosure 992 and the base transceiver station 990. The jumper cable 966 includes a first end 968 and an oppositely disposed second end 970. The first end 968 is connected to the enclosure 992 while the second end 970 is connected to the base transceiver station 990. In one embodiment, the first end 968 includes a plurality of connectors that are engaged with the second side 924 of the fiber optic adapters 920 of the enclosure 992. In one embodiment, the second end 970 of the jumper cable 966 includes a multi-fiber connector that is engaged to the base transceiver station 990. In another embodiment, the second end 970 includes a plurality of connectors that is engaged to the base transceiver station 990.

The base transceiver station 990 is in communication with a telecommunications equipment rack 980 through a multi-fiber patch cable 982. The telecommunications equipment rack 980 is disposed in the hut 922. In one embodiment, the telecommunications equipment rack 980 includes any one or more of a power distribution unit, a fiber distribution unit, a transport switch, a mobile router, a media converter, an Ethernet panel, a DSX panel, protection and a battery. The telecommunications equipment rack 980 is in communication with the demarcation point 914. The demarcation point 914 is in communication with the backhaul 916, which is in communication with the core network 918.

Further details on such a telecommunications network 910 may be found in U.S. patent application Ser. No. 13/087,022, filed Apr. 14, 2011, and titled “Fiber to the Antenna,” the disclosure of which is hereby incorporated herein by reference.

In other implementations, the fiber termination enclosure disclosed above may be used with other applications. For example, some fiber termination enclosures may be installed at facilities, such as multiple dwelling units, apartments, condominiums, businesses, etc., to provide a subscriber access point to the fiber optic network. Other fiber termination enclosures may be installed on towers located on top of high rise buildings or other tall structures. Various implementations of fiber termination enclosures may be installed at walls, H-frame racks, and poles.

Having described the preferred aspects and implementations of the present disclosure, modifications and equivalents of the disclosed concepts may readily occur to one skilled in the art. For example, one or more pass-through connections may be provided with any of the above-described types of modular plate assemblies 120. However, it is intended that such modifications and equivalents be included within the scope of the claims which are appended hereto.

Claims

1. A plate assembly comprising:

a mounting plate having a first side and a second side, the second side being adapted for stationary mounting to a wall, the mounting plate defining at least one opening through which a fastener may extend to secure the mounting plate to the wall;
a cable spool arrangement rotationally mounted to the first side of the mounting plate, the cable spool arrangement including: a cable spool including a drum and a radial flange extending outwardly from the drum to define a storage region, the radial flange defining a front of the cable spool, the radial flange also defining an aperture through which optical fibers or cables may pass between the storage region and the front of the cable spool; a fiber management region including bend radius protectors; and a termination region including a plurality of fiber optic adapters;
a locking flange including a first portion extending forwardly from the first side of the mounting plate beyond the radial flange of the cable spool, the first portion recessed inwardly from a periphery of the mounting plate and disposed outside a footprint of the cable spool, the locking flange also including a second portion extending from the first portion parallel with the radial flange; and
a fastener configured to selectively engage both the locking flange and the cable spool to releasably lock the cable spool in a rotationally fixed position relative to the mounting plate.

2. The plate assembly of claim 1, wherein the fiber optic adapters are included in sliding adapter modules.

3. The plate assembly of claim 1, further comprising a cable having a portion wrapped around the drum, another portion passing through the aperture defined in the radial flange, and an end portion plugged into the fiber optic adapters.

4. The plate assembly of claim 3, wherein the cable spool is precabled with the cable at a factory or manufacturing center.

5. The plate assembly of claim 1, wherein the mounting plate has a rectangular shape.

6. The plate assembly of claim 1, wherein the mounting plate is disposed within an enclosure and mounted to a wall of the enclosure.

7. The plate assembly of claim 6, wherein the enclosure defines an access opening through which the mounting plate is inserted into the enclosure.

8. The plate assembly of claim 7, wherein the enclosure includes a door that selectively covers the access opening.

9. A plate assembly comprising:

a mounting plate having a first side and a second side, the second side being adapted for stationary mounting to a wall, the mounting plate defining at least one opening through which a fastener may extend to secure the mounting plate to the wall;
a cable spool arrangement rotationally mounted to the first side of the mounting plate, the cable spool arrangement including: a cable spool including a drum and a radial flange extending outwardly from the drum to define a storage region, the radial flange defining a front of the cable spool, the radial flange also defining an aperture through which optical fibers or cables may pass between the storage region and the front of the cable spool; a fiber management region including bend radius protectors; and a termination region including a plurality of fiber optic adapters;
a locking flange including a first portion extending forwardly from the first side of the mounting plate beyond the radial flange of the cable spool, the first portion recessed inwardly from a periphery of the mounting plate and disposed outside a footprint of the cable spool; and
locking means for releasably locking the spool in a rotationally fixed position relative to the locking flange.

10. The plate assembly of claim 9, wherein the locking flange also includes a second portion extending from the first portion parallel with the radial flange.

11. The plate assembly of claim 10, wherein the second portion extends over a portion of the radial flange.

12. The plate assembly of claim 9, further comprising a cable having a portion wrapped around the drum, another portion passing through the aperture defined in the radial flange, and an end portion plugged into the fiber optic adapters.

13. The plate assembly of claim 12, wherein the cable spool is precabled with the cable at a factory or manufacturing center.

14. The plate assembly of claim 9, wherein the mounting plate has a rectangular shape.

15. A plate assembly comprising:

a mounting plate having a first side and a second side, the second side being adapted for stationary mounting to a wall, the mounting plate defining at least one opening through which a fastener may extend to secure the mounting plate to the wall;
a cable spool arrangement rotationally mounted to the first side of the mounting plate, the cable spool arrangement including: a cable spool including a drum and a radial flange extending outwardly from the drum to define a storage region, the radial flange defining a front of the cable spool, the radial flange also defining an aperture through which optical fibers or cables may pass between the storage region and the front of the cable spool; a fiber management region including bend radius protectors; and a termination region including a plurality of fiber optic adapters;
a locking flange including a first portion extending forwardly from the first side of the mounting plate beyond the radial flange of the cable spool, the first portion recessed inwardly from a periphery of the mounting plate and disposed outside a footprint of the cable spool;
the cable spool being lockable relative to the locking flange.

16. The plate assembly of claim 15, wherein the locking flange also includes a second portion extending from the first portion parallel with the radial flange.

17. The plate assembly of claim 16, wherein the second portion extends over a portion of the radial flange.

18. The plate assembly of claim 15, further comprising a cable having a portion wrapped around the drum, another portion passing through the aperture defined in the radial flange, and an end portion plugged into the fiber optic adapters.

19. The plate assembly of claim 18, wherein the cable spool is precabled with the cable at a factory or manufacturing center.

20. The plate assembly of claim 15, wherein the mounting plate has a rectangular shape.

Referenced Cited
U.S. Patent Documents
1276825 August 1918 Swope
1442999 January 1923 Boyle
1446410 February 1923 Bennett et al.
1474580 November 1923 Clark et al.
RE20995 February 1939 Beasley
2282156 May 1942 Benes
2502496 April 1950 Wickman
2521226 September 1950 Keller
2727703 December 1955 Bonnett
2767426 October 1956 Grupp
3131729 May 1964 Leysinger
3346705 October 1967 Slinkard et al.
3433579 March 1969 Runnion
3612424 October 1971 Friedel
3657491 April 1972 Ryder et al.
3667417 June 1972 Clinkenbeard
3837448 September 1974 Hagstrom
3920308 November 1975 Murray
3940086 February 24, 1976 Stoqulet
3983977 October 5, 1976 Crabb
4053118 October 11, 1977 Aikins
4081258 March 28, 1978 Goell et al.
4143746 March 13, 1979 Lowery
4201278 May 6, 1980 Balde
4384688 May 24, 1983 Smith
4470558 September 11, 1984 Stamper
4520239 May 28, 1985 Schwartz
4587801 May 13, 1986 Missout et al.
4635875 January 13, 1987 Apple
4657140 April 14, 1987 Zagar et al.
4666237 May 19, 1987 Mallinson
4767073 August 30, 1988 Malzacher
4869437 September 26, 1989 Berz et al.
4883337 November 28, 1989 Dahlgren
4913369 April 3, 1990 Lia et al.
4939798 July 10, 1990 Last
4940859 July 10, 1990 Peterson
4953194 August 28, 1990 Hansen et al.
4953810 September 4, 1990 Stadig
4968929 November 6, 1990 Hauck et al.
4978310 December 18, 1990 Shichida
5016554 May 21, 1991 Harris, Jr. et al.
5052940 October 1, 1991 Bengal
5066149 November 19, 1991 Wheeler et al.
5066256 November 19, 1991 Ward, Sr.
5071211 December 10, 1991 Debortoli et al.
5074863 December 24, 1991 Dines
5100221 March 31, 1992 Carney et al.
5107532 April 21, 1992 Hansen et al.
5161988 November 10, 1992 Krupka
5166970 November 24, 1992 Ward
5167001 November 24, 1992 Debortoli et al.
5172841 December 22, 1992 Friedman
5185843 February 9, 1993 Aberson et al.
5214730 May 25, 1993 Nagasawa et al.
5222164 June 22, 1993 Bass, Sr. et al.
5246377 September 21, 1993 Kawahara et al.
5265187 November 23, 1993 Morin et al.
5265815 November 30, 1993 Soyka et al.
5280861 January 25, 1994 Corriveau
5305405 April 19, 1994 Emmons et al.
5310356 May 10, 1994 Obata et al.
5317663 May 31, 1994 Beard et al.
5326040 July 5, 1994 Kramer
5335874 August 9, 1994 Shrum et al.
5353367 October 4, 1994 Czosnowski et al.
5393249 February 28, 1995 Morgenstern et al.
5394503 February 28, 1995 Dietz, Jr. et al.
5413494 May 9, 1995 Dewey et al.
5418334 May 23, 1995 Williams
5419717 May 30, 1995 Abendschein et al.
5434944 July 18, 1995 Kerry et al.
5448015 September 5, 1995 Jamet et al.
5448675 September 5, 1995 Leone et al.
5467062 November 14, 1995 Burroughs et al.
5473715 December 5, 1995 Schofield et al.
5483467 January 9, 1996 Krupka et al.
5490229 February 6, 1996 Ghandeharizadeh et al.
5494234 February 27, 1996 Kramer
5494446 February 27, 1996 DeLucia et al.
5497444 March 5, 1996 Wheeler
5519275 May 21, 1996 Scott et al.
5522561 June 4, 1996 Koyamatsu et al.
5528453 June 18, 1996 Berman et al.
5544836 August 13, 1996 Pera
5551545 September 3, 1996 Gelfman
5613030 March 18, 1997 Hoffer et al.
5638481 June 10, 1997 Arnett
5657412 August 12, 1997 Caudrelier
5685741 November 11, 1997 Dewey et al.
5703990 December 30, 1997 Robertson et al.
5709347 January 20, 1998 Hoffmann et al.
5712942 January 27, 1998 Jennings et al.
5717810 February 10, 1998 Wheeler
5718397 February 17, 1998 Stevens
5734774 March 31, 1998 Morrell
5749148 May 12, 1998 White, III et al.
5773757 June 30, 1998 Kenney et al.
5787219 July 28, 1998 Mueller et al.
5821510 October 13, 1998 Cohen et al.
5854824 December 29, 1998 Bengal et al.
5915640 June 29, 1999 Wagter et al.
5957401 September 28, 1999 O'Donnell
5987203 November 16, 1999 Abel et al.
5987207 November 16, 1999 Hoke
5992787 November 30, 1999 Burke
6002331 December 14, 1999 Laor
6035032 March 7, 2000 Daoud
6077108 June 20, 2000 Lorscheider et al.
6095837 August 1, 2000 David et al.
6116961 September 12, 2000 Henneberger et al.
6135254 October 24, 2000 Liao
6160946 December 12, 2000 Thompson et al.
6176559 January 23, 2001 Tiramani et al.
6215938 April 10, 2001 Reitmeier et al.
6220413 April 24, 2001 Walters et al.
6220762 April 24, 2001 Kanai et al.
6222908 April 24, 2001 Bartolutti et al.
6222975 April 24, 2001 Gilbert et al.
6223675 May 1, 2001 Watt et al.
6234830 May 22, 2001 Ensz et al.
6238235 May 29, 2001 Shavit et al.
6285293 September 4, 2001 German et al.
6286777 September 11, 2001 Black
6300877 October 9, 2001 Schannach et al.
6315598 November 13, 2001 Elliot et al.
6330148 December 11, 2001 Won et al.
6330307 December 11, 2001 Bloch et al.
6349893 February 26, 2002 Daoud
6350148 February 26, 2002 Bartolutti et al.
6361360 March 26, 2002 Hwang et al.
6367347 April 9, 2002 Blaschke et al.
6419175 July 16, 2002 Rankin, VI
6421322 July 16, 2002 Koziy et al.
6424710 July 23, 2002 Bartolutti et al.
6433274 August 13, 2002 Doss et al.
6456768 September 24, 2002 Boncek et al.
D466479 December 3, 2002 Pein et al.
6494396 December 17, 2002 Sugata
6499861 December 31, 2002 German et al.
6511009 January 28, 2003 Harrison et al.
6511231 January 28, 2003 Lampert et al.
6522737 February 18, 2003 Bartolutti et al.
6522826 February 18, 2003 Gregory
6533216 March 18, 2003 Bumgarner et al.
6554221 April 29, 2003 Hinds
6554484 April 29, 2003 Lampert
6574586 June 3, 2003 David et al.
6591051 July 8, 2003 Solheid et al.
6616080 September 9, 2003 Edwards et al.
6626697 September 30, 2003 Martin et al.
6636152 October 21, 2003 Schannach et al.
6643443 November 4, 2003 Holman et al.
6648520 November 18, 2003 McDonald et al.
6669129 December 30, 2003 Shah
6684179 January 27, 2004 David
6711339 March 23, 2004 Puetz et al.
6715619 April 6, 2004 Kim et al.
6721484 April 13, 2004 Blankenship et al.
6725177 April 20, 2004 David et al.
6743044 June 1, 2004 Musolf et al.
6745971 June 8, 2004 Renzoni
6758314 July 6, 2004 Woodruff
6760530 July 6, 2004 Mandry
6793408 September 21, 2004 Levy et al.
6802735 October 12, 2004 Pepe et al.
6808116 October 26, 2004 Eslambolchi et al.
6814624 November 9, 2004 Clark et al.
6819854 November 16, 2004 Young et al.
6834517 December 28, 2004 Sheehy, Jr.
6845207 January 18, 2005 Schray
6850685 February 1, 2005 Tinucci et al.
6856748 February 15, 2005 Elkins, II et al.
6885799 April 26, 2005 Lee
6898368 May 24, 2005 Colombo et al.
6901200 May 31, 2005 Schray
6905363 June 14, 2005 Musolf et al.
6915058 July 5, 2005 Pons
6932517 August 23, 2005 Swayze et al.
6933441 August 23, 2005 Fuller et al.
6937725 August 30, 2005 Liao
D510068 September 27, 2005 Haggay et al.
6944387 September 13, 2005 Howell et al.
6948680 September 27, 2005 Ganster
6961675 November 1, 2005 David
6971895 December 6, 2005 Sago et al.
6976867 December 20, 2005 Navarro et al.
6997410 February 14, 2006 Huang
7000863 February 21, 2006 Bethea et al.
7011538 March 14, 2006 Chang
7016590 March 21, 2006 Tanaka et al.
7017721 March 28, 2006 Bradford et al.
7027704 April 11, 2006 Frohlich et al.
7036601 May 2, 2006 Berg et al.
7050041 May 23, 2006 Smith et al.
7052281 May 30, 2006 Meyberg et al.
7077710 July 18, 2006 Haggay et al.
7081808 July 25, 2006 Colombo et al.
7112090 September 26, 2006 Caveney et al.
7123810 October 17, 2006 Parrish
7139461 November 21, 2006 Puetz et al.
7142764 November 28, 2006 Allen et al.
7153142 December 26, 2006 Shifris et al.
7165728 January 23, 2007 Durrant et al.
7193422 March 20, 2007 Velleca et al.
7210858 May 1, 2007 Sago et al.
7220144 May 22, 2007 Elliot et al.
7226217 June 5, 2007 Benton et al.
7234944 June 26, 2007 Nordin et al.
7292763 November 6, 2007 Smith et al.
7297018 November 20, 2007 Caveney et al.
7298952 November 20, 2007 Allen et al.
7306101 December 11, 2007 Murry
7312715 December 25, 2007 Shalts et al.
D559186 January 8, 2008 Kelmer
7315224 January 1, 2008 Gurovich et al.
7315681 January 1, 2008 Kewitsch
7346253 March 18, 2008 Bloodsworth et al.
7352289 April 1, 2008 Harris
7364108 April 29, 2008 Kim et al.
7369739 May 6, 2008 Kline et al.
7370106 May 6, 2008 Caveney
7397997 July 8, 2008 Ferris et al.
7400814 July 15, 2008 Hendrickson et al.
7406242 July 29, 2008 Braga
7416349 August 26, 2008 Kramer
7477829 January 13, 2009 Kaplan
7479032 January 20, 2009 Hoath et al.
7512304 March 31, 2009 Gronvall et al.
7519000 April 14, 2009 Caveney et al.
7522806 April 21, 2009 Hendrickson et al.
7533841 May 19, 2009 Harrison et al.
7534137 May 19, 2009 Caveney et al.
7546018 June 9, 2009 Hendrickson et al.
7552872 June 30, 2009 Tokita et al.
7570861 August 4, 2009 Smrha et al.
7591667 September 22, 2009 Gatnau Navarro et al.
7676136 March 9, 2010 Wakileh et al.
7697811 April 13, 2010 Murano et al.
7711233 May 4, 2010 Mahoney
7715679 May 11, 2010 Kowalczyk et al.
7748660 July 6, 2010 Hendrickson et al.
7751672 July 6, 2010 Smith et al.
7756379 July 13, 2010 Kowalczyk et al.
7809234 October 5, 2010 Smith et al.
7811119 October 12, 2010 Caveney et al.
7869426 January 11, 2011 Hough et al.
7869682 January 11, 2011 Kowalczyk et al.
7872738 January 18, 2011 Abbott
7885505 February 8, 2011 Zimmel
7894701 February 22, 2011 Kowalczyk et al.
8081857 December 20, 2011 Nair et al.
8131126 March 6, 2012 Kowalczyk et al.
8157582 April 17, 2012 Frey et al.
8189984 May 29, 2012 Kowalczyk et al.
8229267 July 24, 2012 Kowalczyk et al.
8254740 August 28, 2012 Smith et al.
8265447 September 11, 2012 Loeffelholz et al.
8326107 December 4, 2012 Cooke et al.
8380035 February 19, 2013 Kowalczyk et al.
8422847 April 16, 2013 Kowalczyk et al.
8437596 May 7, 2013 Nair et al.
8494333 July 23, 2013 Kowalczyk et al.
8494334 July 23, 2013 Kowalczyk et al.
8565572 October 22, 2013 Krampotich et al.
8705929 April 22, 2014 Kowalczyk et al.
8774588 July 8, 2014 Kowalczyk et al.
RE45153 September 23, 2014 Hendrickson et al.
8891931 November 18, 2014 Kowalczyk et al.
8929706 January 6, 2015 Teymouri
8938147 January 20, 2015 Krampotich et al.
9042700 May 26, 2015 Smith et al.
9057860 June 16, 2015 Kowalczyk et al.
9078287 July 7, 2015 Khemakhem et al.
9170392 October 27, 2015 Krampotich et al.
9223106 December 29, 2015 Coan et al.
9261663 February 16, 2016 Loeffelholz et al.
9261666 February 16, 2016 Kowalczyk et al.
9341802 May 17, 2016 Krampotich et al.
9423584 August 23, 2016 Coan et al.
9606319 March 28, 2017 Kowalczyk et al.
9678293 June 13, 2017 Coan et al.
20010019002 September 6, 2001 Walters et al.
20010048044 December 6, 2001 Sugata
20020003186 January 10, 2002 Hinds
20020023814 February 28, 2002 Poutiatine
20020023984 February 28, 2002 Oppmann et al.
20020083538 July 4, 2002 Silverman et al.
20020126980 September 12, 2002 Holman et al.
20020164121 November 7, 2002 Brennan, III et al.
20020171002 November 21, 2002 Krestsch et al.
20030037480 February 27, 2003 Davis
20030042348 March 6, 2003 Salentine et al.
20030142817 July 31, 2003 Liao
20030230667 December 18, 2003 Ganster
20040052498 March 18, 2004 Colombo et al.
20040065443 April 8, 2004 Berg et al.
20040084271 May 6, 2004 Woodruff
20040170369 September 2, 2004 Pons
20040200332 October 14, 2004 Chen
20040209505 October 21, 2004 Wade et al.
20040240807 December 2, 2004 Frohlich et al.
20040244430 December 9, 2004 Sheehy, Jr.
20040258384 December 23, 2004 Trebesch et al.
20050062881 March 24, 2005 Caci et al.
20050103515 May 19, 2005 Fuller et al.
20050128769 June 16, 2005 Gozum et al.
20050145522 July 7, 2005 Bloodworth et al.
20050184186 August 25, 2005 Tsoi et al.
20050185910 August 25, 2005 Zimmel
20050213920 September 29, 2005 Tanaka et al.
20050247136 November 10, 2005 Cross et al.
20050258203 November 24, 2005 Weaver
20050258411 November 24, 2005 Zeitler
20060028198 February 9, 2006 Hoopengarner
20060045458 March 2, 2006 Sasaki et al.
20060054760 March 16, 2006 Murry
20060148279 July 6, 2006 German et al.
20060160395 July 20, 2006 Macauley et al.
20060163403 July 27, 2006 Dickson
20060169856 August 3, 2006 Dorenkamp et al.
20060183362 August 17, 2006 Mullaney et al.
20060185953 August 24, 2006 Gieseke
20060186255 August 24, 2006 Rooker
20060187696 August 24, 2006 Lanni
20060210230 September 21, 2006 Kline et al.
20060231672 October 19, 2006 Eastwood et al.
20060264094 November 23, 2006 Young
20060266605 November 30, 2006 Caamano et al.
20060280418 December 14, 2006 Mahoney
20070023559 February 1, 2007 Scapillato et al.
20070025675 February 1, 2007 Kramer
20070036506 February 15, 2007 Kewitsch
20070096538 May 3, 2007 Niemi et al.
20070108333 May 17, 2007 Kuramoto
20070165995 July 19, 2007 Reagan et al.
20070176045 August 2, 2007 Chen
20070189691 August 16, 2007 Barth et al.
20070237470 October 11, 2007 Aronson et al.
20080008436 January 10, 2008 Reagan et al.
20080011990 January 17, 2008 Kostet et al.
20080013893 January 17, 2008 Zheng et al.
20080013909 January 17, 2008 Kostet et al.
20080035778 February 14, 2008 Belden et al.
20080037945 February 14, 2008 Gniadek et al.
20080093187 April 24, 2008 Roberts et al.
20080100467 May 1, 2008 Downie et al.
20080116312 May 22, 2008 Eastwood et al.
20080145013 June 19, 2008 Escoto et al.
20080170831 July 17, 2008 Hendrickson et al.
20080011514 January 17, 2008 Zheng et al.
20080199139 August 21, 2008 Henderson
20080218947 September 11, 2008 Atkinson
20080236209 October 2, 2008 Conti et al.
20080292261 November 27, 2008 Kowalczyk et al.
20080315030 December 25, 2008 Hendrickson et al.
20090057085 March 5, 2009 Caamano et al.
20090060441 March 5, 2009 Kowalczyk et al.
20090074370 March 19, 2009 Kowalczyk et al.
20090097846 April 16, 2009 Kozischek et al.
20090098763 April 16, 2009 Below et al.
20090166404 July 2, 2009 German et al.
20090190894 July 30, 2009 Nhep et al.
20090215310 August 27, 2009 Hoath et al.
20090257726 October 15, 2009 Redmann et al.
20090317047 December 24, 2009 Smith et al.
20100054680 March 4, 2010 Lochkovic et al.
20100054682 March 4, 2010 Cooke
20100054684 March 4, 2010 Cooke et al.
20100074587 March 25, 2010 Loeffelholz et al.
20100090830 April 15, 2010 Conti et al.
20100166376 July 1, 2010 Nair et al.
20100211664 August 19, 2010 Raza et al.
20100211665 August 19, 2010 Raza et al.
20100211697 August 19, 2010 Raza et al.
20100215049 August 26, 2010 Raza et al.
20100322583 December 23, 2010 Cooke et al.
20110024544 February 3, 2011 Smrha et al.
20110044599 February 24, 2011 Kowalczyk et al.
20110092100 April 21, 2011 Coffey et al.
20110094274 April 28, 2011 Conti et al.
20110103761 May 5, 2011 LeBlanc et al.
20110158598 June 30, 2011 LeBlanc et al.
20110222829 September 15, 2011 Loeffelholz et al.
20110317974 December 29, 2011 Krampotich
20120063735 March 15, 2012 Nair et al.
20120230644 September 13, 2012 Marmon et al.
20130094828 April 18, 2013 Loeffelholz et al.
20130129295 May 23, 2013 Arakkakudy et al.
20130170810 July 4, 2013 Badar et al.
20130170811 July 4, 2013 Kowalczyk et al.
20130242866 September 19, 2013 Lin et al.
20140010512 January 9, 2014 Kowalczyk et al.
20140010513 January 9, 2014 Kowalczyk et al.
20140376871 December 25, 2014 Kowalczyk et al.
20150063770 March 5, 2015 Kowalczyk et al.
20150093088 April 2, 2015 Matz et al.
20150177472 June 25, 2015 Kowalczyk et al.
20170199344 July 13, 2017 Kowalczyk et al.
20170285286 October 5, 2017 Haile-Mariam
20170336587 November 23, 2017 Coan et al.
Foreign Patent Documents
1799296 July 2006 CN
42 26 368 February 1994 DE
102 44 304 March 2004 DE
1 107 031 June 2001 EP
2 618 195 July 2013 EP
2 566 997 January 1986 FR
2 236 398 April 1991 GB
1-123203 May 1989 JP
9-236709 September 1997 JP
11-87006 March 1999 JP
11-349230 December 1999 JP
2003-114339 April 2003 JP
2005-73365 March 2005 JP
2005-249858 September 2005 JP
2007-121609 May 2007 JP
WO 2009/048680 April 2009 WO
WO 2010/001400 January 2010 WO
WO 2010/081186 July 2010 WO
WO 2010/121639 October 2010 WO
Other references
  • International Search Report for International Application No. PCT/US2012/043827 dated Dec. 28, 2012 (2 pages).
  • Opterna AM's MultiOpt® line of FTTX products, Product Index, Opertna AM, Inc., 16 pages (Copyright 2011).
  • Complaint, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307, 77 pages (Jan. 31, 2017).
  • Complaint Exhibit G, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 3 pages (Jan. 31, 2017).
  • Complaint Exhibit H, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 3 pages (Jan. 31, 2017).
  • Answer, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 27 pages (Apr. 24, 2017).
  • Defendant Clearfield Inc.'s Inc., Preliminary Invalidity Claim Charts and Disclosures, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 62 pages (Oct. 6, 2017).
  • Defendant Clearfield Inc.'s Invalidity Claim Chart Exhibit 10, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 36 pages (Oct. 6, 2017)
  • Defendant Clearfield Inc.'s Invalidity Claim Chart Exhibit 11, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 60 pages (Oct. 6, 2017).
  • Defendant Clearfield Inc.'s Invalidity Claim Chart Table D, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 7 pages (Oct. 6, 2017).
  • Defendant Clearfield Inc.'s Invalidity Claim Chart Table E, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 7 pages (Oct. 6, 2017).
  • Plaintiff CommScope's Initial Claim Charts including Exhibits J and K, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 28 pages (Oct. 9, 2017).
  • Plaintiff CommScope Technologies LLC's Response to Defendant's First Set of Interrogatories to Plaintiff (Nos. 1-15), CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 26 pages (Oct. 9, 2017).
  • Plaintiff CommScope Technologies LLC's Supplemental Response to Defendant's Interrogatory No. 2, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 5 pages (Oct. 9, 2017).
  • Plaintiff CommScope Technologies LLC's Memorandum in Support of Motion to Compel Discovery, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 21 pages (Oct. 9, 2017).
  • Petition for Inter Partes Review of U.S. Pat. No. 8,705,929, Clearfield Inc. v. CommScope Technologies LLC, Case No. IPR2017-02122, 67 pages (Sep. 15, 2017).
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1003—Declaration of Dr. Michael Lebby, 141 pages (Sep. 15, 2017).
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1007—Prosecution History of U.S. Appl. No. 12/182,705, filed Jul. 30, 2008., 332 pages.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1008—PCT Patent No. WO 2009/048680 A1.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1009—European Patent No. 2 618 195 A2.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1010—File Wrapper of EP App. No. 13163032.9, downloaded from European Patent Office on Aug. 10, 2017, 222 pages.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1011—U.S. Pat. No. 4,657,140.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1012—USConec MTP® Brand Connectors Data Sheet (© 2014), 2 pages.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1013—Katsuki Suematsu et al., “Super Low-Loss, Super High-Density Multi-Fiber Optical Connectors,” Furukawa Review (n. 23), 2003 (“Suematsu”).
  • Australian Office Action (Appln. No. 2008247361), dated Nov. 8, 2013.
  • Complaint relating to Civil Action No. 1:11cv-735 (GBL-IDD), ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (5 pages).
  • Complaint relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Apr. 11, 2011 (14 pages).
  • Description of Admitted Prior Art, 30 pages.
  • European Search Report for Application No. 13163032.9 dated Jul. 4, 2013.
  • European Search Report for Application No. 15182271.5 dated Dec. 2, 2015.
  • F3DF Modules, ADC Telecommunications, Inc. © 1995, “Individual 12-Pack Assemblies”, pp. 90.
  • Fiber Cable Management Products, Third Edition, ADC Telecommunications, Inc., © 1995, 1998.
  • Fiber Distribution Frame, Pre-Terminated Rear Load Connector Module, Installation Instructions, ADC Telecommunications, Inc., © 2000.
  • Fiber Main Distribution Frame (FMDF), Fiber Terminal Block, Installation Instructions, ADC Telecommunications, Inc., © 2001.
  • Fiber Panel Products—Cable Management Tray Panels, ADC Telecommunications, Inc., © 1994, 1996 “72 Fiber Distribution Module (FDM) with Intrafacility Fiber Cable”, pp. 56.
  • Fiber Panel Products, Second Edition, ADC Telecommunications, Inc., © 1994, 1996.
  • FL2000 Products—Preconfigured Panels, ADC Telecommunications, Inc., © 2000 “Rack or Cabinet Mount Termination Panel with Multifiber Cable”, pp. 13.
  • FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996.
  • FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996, “Rack Mount Panel with Intrafacility Fiber Cable”, pp. 16.
  • IFC Style Frame Modules, ADC Telecommunications, Inc., © 1995, “Connector Module Equipped with IFC”, pp. 27.
  • International Search Report and Written Opinion for PCT/US2008/062764 dated Aug. 8, 2008.
  • International Search Report and Written Opinion for PCT/US2008/075196 dated Nov. 18, 2008.
  • International Search Report and Written Opinion for PCT/US2008/072218 dated Mar. 18, 2009.
  • Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000, “Fiber Termination Blocks (FTB) Preterminated”, pp. 8.
  • Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000.
  • Next Generation Frames—Fiber Termination Blocks, ADC Telecommunication, Inc., © 1998, “Fiber Termination Blocks (FTB) Preterminated” pp. 6.
  • Preliminary Response by Patent Owner Under 37 C.F.R. § 42.107, Case IPR2017-02122, Paper No. 6, 71 pages (Dec. 22, 2017).
  • Ex. 2001—Declaration of Casimer DeCusatis in Support of Patent Owner's Preliminary Response, Case IPR2017-02122.
  • Ex. 2002—Office Action dated Jun. 19, 2009 in connection with U.S. Appl. No. 12/182,705.
  • Ex. 2003—Response to Jun. 19, 2009 Office Action in connection with U.S. Appl. No. 12/182,705.
  • Ex. 2004—U.S. Patent Application Publication No. 2006/0210230 (“Kline”).
  • Ex. 2005—Excerpts from the Merriam-Webster's Collegiate Dictionary (Tenth Edition) (2000).
  • Ex. 2006—Excerpts from the New Oxford American Dictionary (Third Edition) (2010).
  • 7 Inch Modules, ADC Telecommunications, Inc, © 1998, “7 Inch Connector Module with IFC”, pp. 127.
  • Australian Examination Report for Application No. 2015205930; dated Jul. 13, 2016; 4 pages.
  • Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 20, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030520 on Jan. 7, 2009.
  • Intelligent patching systems carving out a ‘large’ niche, Cabling Installation & Maintenance, vol. 12, Issue 7, Jul. 2004 (5 pages).
  • intelliMAC: The intelligent way to make Moves, Adds or Changes! NORDX/CDT © 2003 (6 pages).
  • International Search Report and Written Opinion for PCT/US2010/052872 dated Jan. 12, 2011.
  • International Search Report and Written Opinion for PCT/US2011/041605 dated Feb. 24, 2012.
  • Meredith, L., “Managers missing point of intelligent patching,” Daa Center News, Jun. 21, 2005, obtained Dec. 2, 2008 from http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gci1099991,00.html.
  • Notice of Allowance for U.S. Appl. No. 13/924,191 dated Dec. 3, 2013.
  • Ohtsuki, F. et al., “Design of Optical Connectors with ID Modules,” Electronics and Communications in Japan, Part 1, vol. 77, No. 2, pp. 94-105 (Feb. 1994).
  • Supplemental Notice of Allowability for U.S. Appl. No. 13/924,191 dated Mar. 10, 2014.
  • Supplemental Notice of Allowability for U.S. Appl. No. 13/924,191 dated Mar. 14, 2014.
  • SYSTIMAX® iPatch System Wins Platinum Network of the Year Award, Press Release, Jan. 30, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030130a on Jan. 7, 2009.
  • TrueNet; TFP Series Rack Mount Fiber Panels, Spec Sheet; May 2008; 8 pages.
  • Value-Added Module System, ADC Telecommunications, Inc., © 1993, 1194, 1998, “12-Pack Module Assemblies”, pp. 30-31.
  • Plaintiff's Notice of Dismissal relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (1 page).
  • Defendant Clearfield Inc.'s Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 51 pages (Dec. 11, 2017).
  • Defendant Clearfield Inc.'s Revised Invalidity Claim Chart Exhibit 10, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 38 pages (Dec. 11, 2017).
  • Defendant Clearfield Inc.'s Revised Invalidity Claim Chart Exhibit 11, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 39 pages (Dec. 11, 2017).
  • Defendant Clearfield Inc.'s Revised Invalidity Claim Chart Table D, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 7 pages (Dec. 11, 2017).
  • Defendant Clearfield Inc.'s Revised Invalidity Claim Chart Table E, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 6 pages (Dec. 11, 2017).
  • Defendant Clearfield Inc.'s Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 65 pages (Jan. 12, 2018).
  • Exhibit 10 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 43 pages (Jan. 12, 2018).
  • Exhibit 11 to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 47 pages (Jan. 12, 2018).
  • Commscope's Response to Clearfield's Second Revised Invalidity Claim Charts and Disclosure, Civil Action No. 17-cv-00307-PJS-BRT, 105 pages (Jan. 19, 2018).
  • Exhibit J to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 21 pages (Jan. 19, 2018).
  • Exhibit K to Second Revised Preliminary Invalidity Claim Charts and Disclosures, Civil Action No. 17-cv-00307-PJS-BRT, 19 pages (Jan. 19, 2018).
  • Joint Status Report, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 11 pages (Feb. 9, 2018.
  • Joint Status Report Exhibit A, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 33 pages (Feb. 9, 2018).
  • Joint Status Report Exhibit B, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 21 pages (Feb. 9, 2018).
  • Stipulation of Dismissal, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 2 pages (Feb. 19, 2018).
  • Order of Dismissal, CommScope Technologies LLC v. Clearfield, Inc., Case No. 0:17-cv-00307-PJS-BRT, 1 page (Feb. 20, 2018).
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1004—U.S. Pat. No. 6,220,413 B1.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1005—U.S. Pat. No. 6,933,441 B2.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1006—U.S. Pat. No. 4,201,278.
  • Inter Partes Review Case No. IPR2017-02122, Ex. 1014—U.S. Pat. No. 6,885,799 B2.
Patent History
Patent number: 10502916
Type: Grant
Filed: Sep 18, 2018
Date of Patent: Dec 10, 2019
Patent Publication Number: 20190018210
Assignee: Commscope Technologies LLC (Hickory, NC)
Inventors: Jonathan Walter Coan (Savage, MN), Dennis Krampotich (Shakopee, MN), Jonathan R. Kaml (Shakopee, MN)
Primary Examiner: Michael Stahl
Application Number: 16/134,187
Classifications
Current U.S. Class: Splice Box And Surplus Fiber Storage/trays/organizers/ Carriers (385/135)
International Classification: G02B 6/44 (20060101); H02G 3/08 (20060101); G02B 6/38 (20060101);